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Summary

The applicability of industrial robots is restricted by their tip accuracy, in par-
ticular for applications in which a tool needs to track a trajectory at high speed.
Flexibility in the drives and joints of these manipulators is an important cause
for their limited accuracy. The flexibilities will cause vibration of the robot tip
along the desired trajectory and deflection due to gravity. The goal of this the-
sis is to develop modelling and identification techniques for industrial robots
that include the effects of joint and drive flexibilities, aiming at the prediction
of the tip motion. The developed modelling and identification techniques are
applied on a Stäubli RX90B industrial robot.

Static measurements have shown that the dominant flexibilities of this robot
are located both in the drives and joints. The links are assumed to be rigid. A
nonlinear finite element formulation is used to derive the equations of motion,
including both types of flexibilities. The simulation model includes the mass
and inertias of the arms and drives, damping of the flexible joints, joint friction
and the stiffness of a gravity compensating spring. Furthermore a model of the
industrial CS8 motion controller is included.

The nonlinear finite element formulation is extended with a new lumped
mass formulation. In this formulation for each rigid beam element, represent-
ing a robot link, a rigid body is defined with equivalent mass and rotational
inertia properties. Furthermore, a vector is defined that describes the centre
of mass of this rigid body with respect to one of the element nodes. This vec-
tor, which is not included in the original element mass formulation, enables a
parameter linear description for the equations of motion. As a result, the non-
linear finite element formulation is suitable for linear parameter identification
techniques.

A linear least squares parameter identification technique is developed to
identify the dynamic parameters of the robot model. This method provides
accurate parameter estimates that are suitable for realistic robot simulations,
provided that the model structure is correct and all degrees of freedom are
known accurately. In this work it has been attempted to measure the relative
motion between two links with a Krypton Rodym 6D camera system. Unfortu-
nately, it appeared that the measurement setup is not sufficiently accurate for
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measuring the small flexible deformations in combination with the large joint
motion.

An alternative parameter identification method is developed, which re-
quires only motor position and motor torque or current data. This inverse
eigenvalue parameter identification method is based on the work of Hovland
et al. (2001), for which some important improvements are proposed. Firstly, the
requirement to switch off the feedback controllers is avoided by using Multi-
ple Input Multiple Output identification experiments. Secondly, a frequency
domain system identification technique is proposed to extract the required
(anti-)resonance frequencies accurately from experimental data. The original
work does not provide any method for this. Thirdly, it is shown that although
only drive flexibilities can be identified, the new method can be applied to
robots with both joint and drive flexibilities.

The undamped (anti-)resonance frequencies of the robot are extracted from
a common denominator matrix polynomial that is estimated using frequency
domain system identification techniques. Accurate identification of such a ma-
trix polynomial requires a correct description of the robot dynamics and the
experimental conditions. Therefore, the nonlinear distortions arising from the
nonlinear robot dynamics are included in a linear errors in variables stochastic
framework. To exclude the nonlinearities of the controller in the estimation of
the noise covariances, a new reference signal is proposed for the mapping of
the input and output signals of several experiments to a common input signal.

An experimental analysis shows that the number of modes that can be ex-
tracted from experimental data is in agreement with the number of modes of
the proposed robot model. Furthermore, the estimated accuracy of the dy-
namic parameters as a result of measurement noise and nonlinear distortions is
very reasonable. The current analysis is limited to the estimation of the inertia
and stiffness of the drives and the mass matrix of the corresponding rigidified
system. Estimating the other dynamic parameters requires an experimental
setup that is able to measure the small elastic joint deformations accurately.
More research is needed to develop such a setup. Nevertheless, the results
obtained so far demonstrate the abilities of the proposed method to estimate
several dynamic parameters of a flexible robot model using only the limited
and noisy data that is available in an industrial robot setup.
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Samenvatting

De toepasbaarheid van industriële robots wordt beperkt door hun nauwkeu-
righeid, in het bijzonder voor applicaties waarbij met hoge snelheid een traject
moet worden gevolgd. Een belangrijke oorzaak van deze beperkte nauwkeu-
righeid is flexibiliteit in de aandrijving en in de scharnieren van deze manipu-
latoren. Deze flexibiliteiten veroorzaken trillingen van de robot langs het ge-
wenste pad en doorbuiging ten gevolge van de zwaartekracht. Dit onderzoek
tracht modellering- en identificatietechnieken te ontwikkelen voor flexibele in-
dustriële robots, met als doel het voorspellen van de beweging van de robot
en zijn gereedschap. De ontwikkelde modellerings- en identificatietechnieken
zijn toegepast op een Stäubli RX90B industriële robot.

Statische metingen hebben laten zien dat de dominante stijfheden van deze
robot zich bevinden in zowel de aandrijving als de scharnieren. De robotar-
men worden verondersteld star te zijn. Een niet-lineaire eindige elementen
methode is gebruikt voor het opstellen van de bewegingsvergelijkingen van
deze robot, inclusief een beschrijving van beide flexibiliteiten. Het simulatie-
model beschrijft de massa’s en traagheden van de armen en de aandrijving,
de demping van de elastische scharnieren, de wrijving in de scharnieren en de
stijfheid van een zwaartekracht compenserende veer. Daarnaast is een model
van de industriële CS8 motion controller opgenomen.

De niet-lineaire eindige elementen formulering is gedurende dit onderzoek
uitgebreid met een nieuwe geconcentreerde massa formulering. In deze for-
mulering wordt voor iedere robotarm, welke is beschreven middels een star
balk element, een star lichaam gedefinieerd met equivalente massa en traag-
heidseigenschappen. Daarnaast wordt een vector gedefinieerd, die het massa-
middelpunt van een arm beschrijft ten opzichte van één van de knooppunten
van het balk element. Deze vector, welke in de oorspronkelijke formulering
niet was opgenomen, maakt een beschrijving mogelijk van de bewegingsver-
gelijkingen in een parameter lineaire vorm.

Met behulp van deze formulering is een lineaire kleinste kwadraten pa-
rameter identificatie methode ontwikkeld. Deze methode geeft nauwkeurige
schattingen van de dynamische parameters van het flexibele robot model, wel-
ke gebruikt kunnen worden voor realistische simulaties, vooropgesteld dat alle
vrijheidsgraden nauwkeurig bekend zijn. In dit werk is getracht de relatieve
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beweging tussen twee armen te meten met behulp van een Krypton Rodym
6D camera systeem. Helaas blijkt dit systeem te onnauwkeurig voor het meten
van de kleine elastische deformaties in combinatie met grote scharnier rotaties.

Een alternatieve parameter identificatie methode is ontwikkeld, welke al-
leen gebruikmaakt van gemeten motorposities en motorkoppels of motorstro-
men. Deze inverse eigenwaarde parameter identificatie methode is gebaseerd
op het werk van Hovland et al. (2001), echter zijn een aantal belangrijke verbe-
teringen aangebracht. Ten eerste is de eis voor het uitschakelen van de mo-
tion controller opgeheven door gebruik te maken van Multiple Input Mul-
tiple Output identificatie experimenten. Ten tweede zijn frequentie domein
systeem identificatie technieken toegepast voor het schatten van de benodig-
de (anti-)resonantie frequenties uit experimentele data. In het originele werk
ontbreekt hiervoor een methode. Ten derde is aangetoond dat hoewel alleen
aandrijf flexibiliteiten kunnen worden geschat, de methode toepasbaar is voor
robots met flexibiliteiten in zowel de aandrijving als de scharnieren.

De ongedempte (anti-)resonantie frequenties van de robot worden geschat
uit een overdrachtsfunctie matrix met een gezamenlijk noemer polynoom. De
overdrachtsfuncties worden geschat middels frequentie domein systeem iden-
tificatie technieken. Het nauwkeurig schatten van een dergelijk model vereist
een correcte beschrijving van de robot dynamica en de experimentele condities.
Daarom zijn de verstoringen afkomstig van de niet-lineaire robot dynamica
toegevoegd aan een lineair errors in variables framework. Voor het uitsluiten
van de niet-lineariteiten afkomstig van de motion controller in de schatting van
de covariantie van de totale meetruis, is een nieuwe methode ontwikkeld. In
deze methode wordt de daadwerkelijk gemeten input in plaats van het meestal
gebruikte externe excitatie signaal gebruikt als referentie signaal voor het pro-
jecteren van de in- en uitgangssignalen van verschillende experimenten op een
gezamenlijk ingangssignaal.

Een experimentele analyse laat zien dat het aantal eigenfrequenties dat kan
worden geschat uit experimentele data in overeenstemming is met het aantal
eigenfrequenties van het ontwikkelde robot model. Bovendien is de nauwkeu-
righeid van de geschatte parameters als gevolg van meetruis en niet-lineaire
verstoringen redelijk. De huidige analyse beperkt zich tot het schatten van de
traag- en stijfheid van de aandrijvingen en de massa matrix van het correspon-
derende starre robot model. Het schatten van de overige parameters vereist
een meetopstelling die in staat is om de kleine elastische deformaties van de
scharnieren nauwkeurig te meten. Meer onderzoek is nodig voor het ontwik-
kelen van een dergelijke opstelling. Desalniettemin geven de huidige resulta-
ten een goede indicatie van de mogelijkheden van de ontwikkelde methode
voor het schatten van meerdere dynamische parameters van een elastisch ro-
bot model, wanneer slechts gebruik gemaakt wordt van de beperkte en vaak
verruiste signalen die beschikbaar zijn in een industriële robot.
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Y (0) / y(0) vector of true output
Y (NL) vector of outputs nonlinear model
Y (s) vector of stochastic nonlinear output distorsions
Y (v) / y(v) vector of stochastic output noise
zj,k,r zeros of transfer function matrix
Z measurement vector
Z(s) vector of stochastic nonlinear distorsions
Z(v) vector of stochastic noise
Z(0) vector of true input and output data
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xiv List of symbols

Greek symbols

αj,k scalar in a Multivariable Frequency Response Function

δ
(a)
j Stribeck velocity power of joint j

δ
(v)
j viscous friction power of joint j

ε vector with elastic deformations / weighted residual
ε(m) vector of independent joint and drive deformations
ε(1m) vector of independent drive deformations
ε(2m),ε(3m) vector of independent joint deformations
ζ relative damping coeffificient
θj rotation of joint j
θ(m) vector of joint angles
θ̇
(s)
j Stribeck velocity of joint j

λ vector of Euler parameters
Λ,Λ′ 3 × 4 Euler transformation matrices
ν[r] eigenvector
N eigenvector matrix
ρ residual
σ stress vector / singular value
σ(c0) pre-stress in gravity compensating spring
σ(ec) stress in gravity compensating spring
σ(d) global stress vector of structural damping
σ(em) global stress vector that is dual to e(m)

σ(k) global stress vector of structural stiffness
σ(εm) global stress vector that is dual to ε(m)

Σ singular value matrix
τ

(a,0)
j asperity friction torque of joint j

τ
( f )
j friction torque of joint j

τ
( f f )
j feed-forward torque of joint j

τ
( f ,s)
j sliding friction torque of joint j

τ
(a)
j driving torque of joint j

Υ input selection matrix
μ

[r]
j,k anti-resonance frequencies

φ angle
Φ system matrix
Φ̄ reduced system matrix
ω[r] resonance frequency
ω angular velocity / angular frequency
Ω resonance frequency matrix
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List of conventions

C complex number
R real number
E{} expected value
D differential operator
d derivative
∂ partial derivative
δ virtual infinitesimal variation
H Hermitian transpose: complex conjugate matrix trans-

pose
T matrix transpose
˙ time derivative
˜ defines a skew symmetric matrix of a vector, see equa-

tion (3.24)
<, > scalar product
ˆ estimation̂ see equation (3.52)
subscript index
superscript power
[superscript] index: element [k] / experiment [m] / phase realisation

[o]
(superscript) name
italic scalar
italic bold vector
CAPITAL BOLD matrix
CAPITAL Fourier transform
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List of abbreviations

DOF Degrees Of Freedom
EV Errors in Variables
JCS Stäubli Combined Joint
LED Light Emitting Diode
LTI Linear Time Invariant
LTV Linear Time Varying
MFRF Multivariable Frequency Response Function
PID Proportional, Integrating and Derivative
SISO Single Input Single Output
SIMO Single Input Multiple Output
MIMO Multiple Input Multiple Output
ML Maximum Likelihood
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Chapter 1

Introduction

The applicability of industrial robots is restricted by the tip accuracy, in par-
ticulary for applications in which industrial robots need to track a trajectory
at high speed. An example of such an application is robotised laser welding.
During laser welding, products are welded with a focussed high power laser
beam. The manipulator has to move the focus of the high-power laser beam
along the weld seam. Typically, an accuracy of about 0.1 mm is required at
speeds higher than 50 mm/s. At these speeds, the accuracy of industrial robots
is often insufficient for the laser welding task.

The accuracy of industrial robots is limited by several aspects, e.g. man-
ufacturing tolerances, joint friction, drive nonlinearities and tracking errors of
the feedback controller. In addition, flexibilities in the drives and joints of these
robot manipulators significantly limit their accuracy. Because of these flexibil-
ities, the robot tip will vibrate along the desired trajectory and deflects due to
gravitational forces. These flexibilities not only limit the accuracy but also the
dynamic performance, since flexibilities in the manipulator decrease the maxi-
mum bandwidth of feedback controllers.

A realistic model of the dynamic behaviour of a robot would offer the pos-
sibility of accurately predicting its tip position. Tip predictions can be used
for off-line programming to decide whether or not a robot can perform a task
within the required tolerance, which would otherwise require costly machine
time for tests on production facilities. A realistic model can also be used to de-
velop an advanced model-based robot controller, that will drive the robot more
accurately. For example, Iterative Learning Control can increase the tip accu-
racy almost to the level of repeatability, provided that a sufficiently accurate
dynamical model of the robot is available.
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2 Chapter 1. Introduction

1

2

3
4

5
6

Figure 1.1: Depiction of the Stäubli RX90B industrial robot.

1.1 Problem statement

The previous examples show the need for accurate dynamical models of in-
dustrial robots. For cases in which the flexibilities can be ignored, the rigid
modelling and identification of industrial robot manipulators is an area that
has been explored more or less in its entirety and standard techniques de-
scribed in textbooks exist, see Kozlowski (1998); Khalil and Dombre (2002).
However, for cases in which flexibility does play a role, the modelling and
especially the identification of industrial robots is still an active research area.
The goal of this work is related to this:

The development of modelling and identification techniques that include the effects of
flexibilities, aiming at the prediction of the tip motion of industrial robots.

The modelling and identification techniques developed in this thesis will
be applied on a Stäubli RX90B industrial robot. A depiction of this six degree
of freedom robot is given in figure 1.1. To predict the tip motion during weld-
ing, Waiboer (2007) developed a realistic closed-loop simulation model of the
Stäubli RX90B robot. This model includes a finite element description of the
rigid body dynamics, an accurate description of the joint friction and a model
of the industrial motion controller.

To improve the accuracy of this simulation model, the dominant flexibilities
of the robot manipulator should be included in the model. Measurements per-
formed on the Stäubli RX90B, which will be explained in section 4.1, showed
that the dominant stiffness of this robot is located in both the drives and the
joints. A finite stiffness in the bearings of a joint results in a bending stiffness
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1.2. Contributions 3

of the joint perpendicular to the rotation axis of the joint. This stiffness will be
called joint stiffness. The torsional stiffness of the drive system, due to a finite
stiffness of axes and gears, will be called drive stiffness.

1.2 Contributions

As will be demonstrated in chapter 2, no standard techniques are available
for the modelling and identification of industrial robots containing joint and
drive flexibilities. The modelling and identification techniques proposed in this
thesis make use of results from several research areas, such as flexible multi-
body dynamics, inverse eigenvalue problems and system identification. In this
thesis some contributions have been made to these research areas, which can
be summarised as follows:

• To identify the dynamic parameters of nonlinear finite element models
(Jonker and Meijaard (1990)), a new lumped mass formulation is devel-
oped, which is linear with regard to the dynamic parameters. Since with
this formulation the number of elements can be reduced, it also has ad-
vantages for simulation.

• Static measurements have shown that the joint and drive flexibility of the
Stäubli RX90B are of the same order of magnitude. A model is developed
which includes both flexibilities.

• A linear least squares identification method is developed to identify the
dynamic parameters of the robot model, including mass and stiffness pa-
rameters. Simulations show that this method yields an accurate model of
the robot, provided that all degrees of freedom (the large joint rotations
and the small elastic deformations) can be measured.

• An alternative parameter identification method is developed, which re-
quires only motor encoder and motor current data. This inverse eigen-
value parameter identification method is based on the work of Hovland
et al. (2001). Using their method it is required that the feedback con-
trollers are switched off. Furthermore, the extraction of the eigenval-
ues from experimental data is unspecified and their models include only
drive flexibilities. The first requirement is made redundant by using Mul-
tiple Input Multiple Output (MIMO) closed-loop identification experi-
ments. Frequency domain system identification techniques are proposed
to extract the required eigenvalues frequencies from experimental data.
In addition, it is shown that although only drive flexibilities can be iden-
tified, the new method can be applied to robots with both joint and drive
flexibilities.

• The norms of the eigenvectors of an eigenvalue problem can be chosen
arbitrary. To solve the inverse eigenvalue problem the eigenvectors are



�

�

“ThesisV2” — Toon Hardeman — 2008/1/6 — 17:11 — page 4 — #24
�

�

�

�

�

�

4 Chapter 1. Introduction

normalised with respect to the mass matrix. By using this mass normali-
sation, an sofar implicitly defined scaling factor in the Multivariable Fre-
quency Response Function (MFRF) of a mechanical system is proven to
be an element of the inverse mass matrix. Furthermore, relations for the
amplitude of the MFRF at infinitely high and low frequencies are derived
using this mass normalisation of the eigenvectors.

• Accurate identification of a MFRF from experimental data requires an
appropriate description of the model structure and the noise conditions.
Therefore, the influence of nonlinear distortions arising from robot non-
linearities are included in a linear errors in variables stochastic frame-
work. To exclude the nonlinearities of the controller in the estimation of
the noise covariances, a new reference signal is proposed for the map-
ping of the input and output signals of several experiments to a common
input signal.

• The identification of a transfer function matrix from experimental robot
data requires more functionality than implemented in available fre-
quency domain system identification toolboxes. Therefore, a new toolbox
is developed which includes this functionality, namely: starting the esti-
mation with a user defined initial model, adding parameter constraints,
using a pole-zero parametrisation of a common denominator transfer
function matrix, and using symmetric input and output relations.

1.3 Outline of this thesis

Chapter 2 presents a literature overview of robot modelling and identification
techniques. Chapter 3 presents the proposed model of the Stäubli RX90B in-
dustrial robot. The equations of motion are written in forms suitable for sim-
ulation and parameter identification. Chapter 4 presents the identification of
the joint and drive stiffnesses using static measurements. Furthermore, a lin-
ear least squares parameter identification technique is presented, which is able
to identify the dynamic parameters provided that the full robot motion can be
measured sufficiently accurately. In chapter 5, an inverse eigenvalue technique
is presented to identify the dynamic parameters of the drives using only mo-
tor encoder and motor current measurements. Chapter 6 presents a frequency
domain system identification technique to estimate the eigenvalues needed for
this identification technique. The theory is illustrated with numerical simu-
lations and experimental measurements of the StäubliRX90B industrial robot.
Chapter 7 discusses the conclusions from preceding chapters and presents rec-
ommendations for further research.
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Chapter 2

State of the art

An overview of the available techniques to model and identify robot manipu-
lators is given in this chapter.

Outline

First, a literature overview of the modelling of flexible robots is presented.
Next, a literature overview of the techniques to identify the dynamic parame-
ters of these models will be given.

2.1 Modelling of flexible robots

A vast amount of literature on the modelling of flexible robot manipulators
is available. First, an overview of the techniques to describe robots with joint
stiffness will be given. In section 1.1, joint stiffness is defined as the bending
stiffness of a joint perpendicular to the rotation axis of the joint, arising from a
finite stiffness of the joint bearings. Next, an overview regarding the modelling
of drive flexibilities will be given. The presented approaches will be discussed
in the section 2.1.3.

2.1.1 Joint stiffness

Several formulations are proposed to model flexible joint manipulators as a
serial chain composed of rigid bodies and joints (Jain and Rodriguez (1993);
Khalil (2000); Swain and Morris (2003)). Each joint describes either a large joint
rotation or a small flexible deformation, see figure 2.1.

Khalil (2000) presents a recursive dynamic model for flexible joint robots,
which is an extension of the recursive Newton-Euler method for rigid serial
robots, described in the textbooks of Kozlowski (1998); Khalil and Dombre
(2002). In general, recursive Newton-Euler methods are efficient in terms of
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flexible
deformations

joint
rotations

body

Figure 2.1: Schematic representation
of a robot model with joint flexibilities

body

drive stiffness

actuator inertia

Figure 2.2: Schematic representa-
tion of a joint with drive flexibility

the number of mathematical operations. The (modified) Denavit-Hartenberg
notation is used to describe the relative position and orientation of two suc-
ceeding bodies. This formulation is used for describing both the large joint
rotations and the flexible deformations. The algorithms for the forward and
inverse dynamic problems consist of three recursive loops. Within these loops,
the joint accelerations or joint torques are computed as functions of the posi-
tions and velocities of the links and actuators.

In addition, Jain and Rodriguez (1993) present a recursive Newton-Euler
algorithm to compute the inverse dynamics of flexible joint robots. The model
is based on the concept of the decomposition of the manipulator into an active
and a passive manipulator system. The active system is related to the large joint
rotations and the passive system is related to the flexible motion. Then, the
respective independent motions are superimposed to represent the complete
system. The presented algorithm is a combination of the existing inverse and
forward recursive algorithms for rigid manipulators.

Swain and Morris (2003) state that the inherent assumption of linear sep-
arability of a flexible manipulator into its active and passive subsystems to
formulate the model may not represent the true dynamic model of the original
manipulator system. A new formulation is presented without the need for this
assumption. In both references the kinematics of the manipulator model are
described with spatial operator algebra, see Rodriguez et al. (1991).

2.1.2 Drive stiffness

In control literature, flexible robot manipulators are usually modelled using
lumped elasticities in the robot drives. In this case, each drive system is mod-
elled as a one degree of freedom mass-spring-damper system. The spring and
damper are located between the actuator inertia and the inertia representing
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2.1. Modelling of flexible robots 7

the link. The inertia and mass properties of the links are usually modelled by
rigid bodies. Figure 2.2 shows a schematic representation of a joint with drive
flexibility. To facilitate readability, the damper has been omitted.

The drive model is based on two assumptions regarding dynamic coupling
between the actuators and the links (Spong (1987)). First, it is assumed that
the kinetic energy of the rotor is due only to its own rotation. Equivalently,
the motion of the rotor is a pure rotation with respect to an inertial frame.
The gyroscopic interactions between the actuator and the links are neglected.
Second, it is assumed that the rotor/gear inertia is symmetric with regard to
the rotor axis of rotation so that the gravitational potential of the system and
also the velocity of the rotor centre of mass are both independent of the rotor
position. In general, these two assumptions hold true for robots with high gear
ratios. As a result the actuator inertia of these robots can be modelled by a
one degree of freedom rotational inertia. A different approach is presented by
Ochier et al. (1995) and Mata et al. (2005). In their work the actuator is modelled
as a rigid body instead of a rotational inertia only.

2.1.3 Discussion

The modelling of robots with elasticity in both the drives and the joints has not
received much attention so far. The models presented above either have flexi-
bilities in the joints or in the drives. However, for realistic dynamic simulations
of the Stäubli RX90B, the effects of both joint and drive flexibilities should be
included in the model. No suitable model is available from the above quoted
literature and hence it has been developed within the scope of this work.

The basic principles of mechanics can be used to derive a model describing
the equations of motion for this specific robot. According to Miro and White
(2002), several authors have published articles showing that for any given ma-
nipulator, customised closed form dynamic formulations are more efficient
than the best of the general schemes. However, the loss of generality makes
it less attractive for this work.

The finite element method (FEM) presented by Jonker (1989) is able to in-
corporate both flexibilities in a dynamic robot model using a so-called hinge
element (Geradin et al. (1986)). The key point in this finite element formula-
tion is the specification of a set of deformation parameters that are invariant
under rigid body motion (Besseling (1982)). Using this formulation, Waiboer
(2007) presented a model of the Stäubli RX90B robot, describing the rigid body
dynamics. Because both type of flexibilities can be incorporated, it is also a
promising formulation for the flexible model as will be shown in chapter 3.
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8 Chapter 2. State of the art

2.2 Parameter identification for robot models

Accurate knowledge of the model parameters is important for obtaining a re-
liable and accurate dynamic robot model. Determination of these parameters
from CAD data may not yield a complete representation because it may not
include dynamic effects like joint friction, joint and drive elasticity and masses
introduced by additional equipment. Experimental parameter identification
using the assembled robot may be the only reliable method to determine accu-
rate values for the parameters.

Regarding rigid models standard techniques are available for the identi-
fication of the robot parameters, as outlined below. An extension to flexible
models is not straightforward and will be discussed separately.

2.2.1 Parameter identification for rigid robot models

A general overview of the parameter identification methods for rigid robots
can be found in textbooks like Kozlowski (1998); Khalil and Dombre (2002).
Experimental robot identification techniques estimate dynamic robot param-
eters based on motion and force/torque data that are measured during robot
motions along optimised trajectories (Armstrong (1989); Swevers et al. (1996)).
Most of these techniques are based on the fact that the dynamic robot model
can be written as a linear set of equations with the dynamic parameters as
unknowns. A formulation such as this allows the use of linear estimation tech-
niques that find the optimal parameter set in a global sense.

However, not all parameters can be identified using these techniques since
some of the parameters do not affect the dynamic response or affect the dy-
namic response in linear combinations with other parameters. The null space
is defined as the parameter space containing parameter combinations that do
not affect the dynamic response. Gautier and Khalil (1990) and Mayeda et al.
(1990) present a set of rules based on the topology of the manipulator system
to group the dependent inertia parameters and to form a minimal set of pa-
rameters that uniquely determine the dynamic response of the robot. In ad-
dition, numerical techniques like the QR decomposition used by Khalil and
Dombre (2002) or the Singular Value Decomposition as described in the work
of Shome et al. (1998) can be used to find the set of minimal or base parame-
ters. In general the base parameter set obtained from a linear parameter fit is
not guaranteed to be a physically meaningful solution. Waiboer et al. (2005a)
suggest that the identified parameters become more physically convincing by
choosing the null space in such a way that the estimated parameters match
a priori given values in least squares sense. This requires an a priori estima-
tion of the parameter values and a sufficiently accurate description of the null
space, neither of which are trivial, in general. Mata et al. (2005) force a physical
feasible solution by adding nonlinear constraints to the optimisation problem.
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2.2. Parameter identification for robot models 9

However, adding nonlinear constraints to a linear problem gives a nonlinear
optimisation problem for which it is hard to find the global minimum.

Optimisation of the excitation trajectory by minimising the influence of
measurement noise is necessary to guarantee sufficient excitation of all pa-
rameters. Armstrong (1989) and Gautier and Khalil (1992) propose criteria for
finding optimal trajectories when using a least squares identification method.
Since the sensitivity of a least squares solution to measurement noise depends
on the condition number of the regression matrix, they used the value of the
condition number as a criterion for finding the optimal excitation trajectories.
Swevers et al. (1996) and Olsen and Petersen (2001) present an experimental
estimation technique using maximum likelihood estimation to solve the noise
problem. With regard to the excitation trajectories, it is advantageous for them
to be periodic, which enables averaging of measurements in order to reduce
stochastic measurements noise. In addition, controlling the frequency contents
of the excitation is needed to avoid excitation of vibrations due to flexibilities.
Therefore, Swevers et al. (1996) and Olsen and Petersen (2001) advice the use
of harmonic excitation trajectories.

2.2.2 Parameter identification for flexible models

The linear least squares identification procedure used for the identification of
rigid robot models assumes that the position signal of all degrees of freedom
are known or can be measured. If the position of all degrees of freedom in-
cluding the corresponding velocities and accelerations are known, the dynamic
model can be written as a linear set of equations with the dynamic parameters
as unknowns. For industrial robots, usually only motor position and torque
data is available. Therefore, measurements from additional degrees of free-
dom arising from flexibilities are not readily available and consequently the
linear least squares technique cannot be used for flexible robot models. Several
authors suggest the application of additional sensors to measure the elastic de-
formations, e.g. acceleration sensors (Pham et al. (2002)), link position and/or
velocity sensors (Tsaprounis and Aspragathos (2000), Huang (2003)) or torque
sensors (Albu-Schäffer and Hirzinger (2001)). First, an overview of identifica-
tion techniques using these additional sensors will be given. Next, an overview
of approaches without the need to apply additional sensors will be given. This
section will conclude with a discussion of the presented approaches.

Identification using additional sensors

Pham et al. (2002) present an identification method for the dynamical param-
eters of simple mechanical systems with lumped elasticity. The parameters
are estimated by using the solution of a weighted least squares system of an
overdetermined system that is linear with regard to a minimal set of param-
eters and obtained by sampling the dynamic model along a trajectory. Two
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10 Chapter 2. State of the art

different cases are considered regarding the types of measurements available
for identification. In the first case, it is assumed that measurements for the mo-
tor and the load position are available. In the second case, it is assumed that
measurements for the motor position and the load acceleration are available.
Instead of the reconstruction of the load position by integration of the mea-
sured acceleration, they suggest differentiating the dynamic equations twice.
However, problems arise for non-continuous terms like joint friction. The use
of a so-called chirp signal as excitation signal should reduce the influence of the
dynamic behaviour, which is represented by these non-differentiable terms, on
the measured data.

Tsaprounis and Aspragathos (2000) suggest the use of both position and
velocity signals to build an adaptive tracking controller for robots with drive
elasticity. The adaptive estimator identifies the parameters of both the flexible
and the rigid subsystems; the drive stiffness is assumed to be known. Huang
(2003) presents an adaptive observer for identifying the parameters of a single-
link flexible drive manipulator, using the position and velocity measurements
of the joint and drive. The motor inertia must be known a priori. In both
references, only simulation results are presented.

Alici and Shirinzadeh (2005) performed static identification experiments to
identify the drive stiffness of a Motoman SK120 industrial robot. They applied
a force to the tip using a cable-pulley system and deadweights. A force/torque
tip sensor measured the applied load. The resulting tip displacement was mea-
sured using a laser tracking system. Based on measured tip data, the drive
stiffness values for three joints were identified.

Albu-Schäffer and Hirzinger (2001) performed identification experiments
on a 7 DOF experimental robot with position sensors on both the motors and
the links. The torque responsible for the elastic deformation of the transmis-
sion system was measured with an additional torque sensor. The robot links
were modelled rigid and only drive flexibilities were present. The rigid body
dynamic parameters were estimated from 3D CAD data. The joint friction pa-
rameters and motor constants were identified using a linear least squares es-
timation. The friction was identified independent of the other parameters by
choosing a trajectory that only excites the friction parameters, namely a saw
tooth profile for the joint position with different constant velocities. The stiff-
ness and damping parameters were obtained from an impulse response gener-
ated by abruptly stopping the motors by closing the brakes. The resulting vi-
brational motion was recorded on the torque sensors. To improve the accuracy
of the estimations the dynamic parameters were identified before assembly in
a dedicated test bed.
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Identification without additional sensors

From a practical point of view, the application of additional sensors for identifi-
cation is not preferred. Adding additional internal sensors to industrial robots
is expensive or even impossible. Therefore, several authors propose methods
that only require motor torque and motor position signals. An overview of
these methods will be given below.

Instead of measuring the elastic deformations with additional sensors, they
can be solved from the equations of motion as a function of the unknown pa-
rameters. In general, this yields dynamic equations which are nonlinear in the
dynamic parameters. As a result, nonlinear optimisation techniques such as
those presented by Wernholt and Gunnarsson (2005) and Hakvoort (2004) are
required to estimate the parameters. As stated by Albu-Schäffer and Hirzinger
(2001), these techniques suffer from the fact that local minima are often ob-
tained, in which case the estimated parameters are very different from the real
physical parameters. For this approach to succeed initial parameter values are
required that are sufficiently accurate.

In the approach proposed by Pham et al. (2001), only the position and
torque data from the motors is used to identify a robot model with drive flexi-
bilities. A nonlinear combination of the original parameters is identified using
the linear least squares solution of an overdetermined linear system, obtained
from sampling the dynamic model along a trajectory. Afterwards, the original
parameters are extracted from the identified nonlinear combinations. In order
to write the system in a parameter linear form, gravitation forces and Coulomb
joint friction are removed from the dynamic equations. To minimise the influ-
ence of joint friction and gravity on the measurements obtained from excitation
experiments, the authors proposed the tracking of a chirp signal.

Hovland et al. (1999) presented an approach for the identification of the
drive flexibilities for industrial robots. The proposed method assumes that the
parameters concerning the rigid-body dynamics are known a priori, including
the motor inertia. During an identification experiment, the motor positions
and motor torques are measured and the motor velocities and accelerations
are computed off-line using Fourier techniques. The equations of motion are
transformed to the frequency domain in a form linear in the unknown param-
eter vector, containing the stiffness and damping parameters of the joints. The
parameter vector is estimated by using the weighted least squares solution of
an overdetermined system obtained from sampling the transformed equations
of motion along the measured trajectory. The authors present experimental
results for an industrial ABB robot.

Some of the robot identification methods presented in literature originate
from model updating techniques used for finite element models, Berglund and
Hovland (2000); Hovland et al. (2001). For updating finite element models, it is
usually impossible to measure all degrees of freedom. The number of degrees
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of freedom is usually very large and the number of measurements is limited.
So, a lack of sensors is commonly present. A good overview of the possibil-
ities of so-called model updating techniques is given in textbooks written by
Gladwell (1986); Friswell and Mottershead (1995) and Ewins (2000). According
to Ewins (2000), it is convenient to group the model updating techniques into
two groups: direct matrix methods, which are those methods in which indi-
vidual elements in the mass and stiffness matrices are adjusted directly from
the comparison between test data and the initial model; and indirect, physical
property adjustment methods, in which changes are made to specific physical
or elemental properties in the model. Probably for historical reasons, a lot of
techniques use measured modal data as input, often extracted from frequency
response functions. Another group of algorithms uses the frequency response
function directly.

Berglund and Hovland (2000) presented a direct method using modal data
to identify the dynamic parameters of a mass-spring-damper equivalent of
any order using only the motor position and motor torque. The identification
method was applied to one joint of an industrial ABB robot. At first, a friction
model is identified by moving a robot joint at low speeds without excitation of
the flexibilities. The friction model is used to remove the friction effects from
measured torque data before the other parameters are estimated.

Secondly, the stiffness and mass parameters are identified using a measured
frequency response function describing the dynamic behaviour from motor
torque to motor acceleration. At this stage it is assumed that the damping is
small and may be neglected. The peaks and valleys in the frequency response
function correspond to the resonance and anti-resonance frequencies of the sys-
tem. By using the Lanczos algorithm (Gladwell (1986)), the system matrix of
a generalised eigenvalue problem can be reconstructed from the eigenvalues
and the first coordinate of the eigenvectors. The eigenvalues correspond to
the resonance frequencies of the frequency response function. The first coor-
dinates of the eigenvectors are computed from the measured resonance and
anti-resonance frequencies. A serial connected mass-spring model has a diag-
onal mass matrix and a symmetric three-diagonal stiffness matrix. This special
structure is exploited to extract the stiffness and mass parameters from the sys-
tem matrix. The mass parameters can be computed up to a scale factor. The
low frequency amplitude of the frequency response function corresponds to
the sum of all masses and can be used to compute the scale factor.

Thirdly, the damper coefficients are identified by minimising the difference
between the heights of the measured and modelled anti-resonance peaks in a
least squares sense using a nonlinear optimisation method.

In Hovland et al. (2001) the method is extended to the identification of mul-
tiple joints of a robot. The robot model contains drive flexibilities and coupled
dynamics between the joints. Because of the inertia coupling, the reduced mass
matrix has off-diagonal terms and the standard Lanczos algorithm cannot be
applied. Instead, a partial identification is performed with the first step of the
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Lanczos algorithm and iteratively the order of the system is reduced. The cou-
pled inertia terms in the mass matrix are identified from the low-frequency
behaviour of the cross-excited frequency response functions. The method re-
quires that for all joints a proportional controller is active and can be switched
off during the excitation of a specific joint.

In the frequency response methods a measured frequency response is di-
rectly compared with the response of an analytical model, without the use of
eigenvalue and eigenvector data. Examples of the frequency response tech-
nique are given by Imregun et al. (1995b,a) and Modak et al. (2002). The meth-
ods update physical parameters for finite element models, so they belong to
the indirect updating methods.

In general, the modal updating techniques only update linear models.
Industrial robots show nonlinear position and velocity dependent dynamics.
Chen and Beale (2003) present a method to combine identified linear models
at different operation points into one nonlinear physical parameterised model.

System identification theory gives several algorithms to estimate higher or-
der state space or transfer function models from a limited number of in- and
outputs, for example using prediction error methods or subspace techniques.
Applications in the field of flexible robot identification are presented below.

Östring et al. (2003) present a grey-box identification of a physically param-
eterised three-mass model of an industrial robot. The model is based on the
first joint of an ABB IRB 1400 robot. The identified model is a time invariant
state space model with a pre-defined model structure. The estimates of the
moments of inertia and spring stiffness, obtained using different data sets, are
almost equal, while the estimates of the friction and damping coefficients fluc-
tuate considerably.

Wernholt and Gunnarsson (2005) use a nonlinear grey-box identification to
identify an industrial robot. A three-step identification procedure is proposed
in which parameters for rigid body dynamics, friction and flexibilities can be
identified using measurements on the motor axes only. In the first step, an
initial estimate of the rigid body and friction parameters is performed using
standard linear regression techniques. In the second step, an initial estimation
of the flexibilities using the method devised by Hovland et al. (2001) is pro-
posed. In the third step, the parameters of a nonlinear physical parameterised
grey-box model are identified directly in time domain using the System Iden-
tification Toolbox of MATLAB.

In addition, black box state space models have been considered in literature
for the estimation of mass, stiffness and damping matrices. De Angelis et al.
(2002) present a methodology to identify the mass stiffness and inertia pa-
rameters for a general linear second order system from identified state-space
matrices. The minimum requirement for the proposed methodology is that all
of the degrees of freedom should contain either a sensor or an actuator, with
at least one co-located sensor-actuator pair. In the work of Lus et al. (2003)
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it is shown that if a system is insufficiently instrumented with sensors and
actuators, it is still possible to create reduced order mass-damping-stiffness
models that incorporate measured and unmeasured degrees of freedom.

Adaptive observers estimate both states and unknown parameters. The
work of Tsaprounis and Aspragathos (2000) and Huang (2003) has already
been discussed. Both references assume that the position and velocity of the
motors and the links can be measured. Östring and Gunnarsson (2004) show
an approach for the identification of three dynamic parameters of a single link
flexible robot model, with only measurements on the motor axis. The total
amount of parameters that can be updated is limited, because some informa-
tion about the system is required to update the states and parameters in the
observer. In general, there is no restriction as to which parameters can be up-
dated. The paper shows experimental results for an industrial ABB robot. For
this robot the motor constant, the link inertias and the viscous friction coeffi-
cient are estimated.

Discussion

Many of the references previously mentioned present only simulation exam-
ples or show results for self designed experimental robots. Only a few refer-
ences show experimental results for industrial robots (Berglund and Hovland
(2000); Hovland et al. (2001); Östring et al. (2003); Östring and Gunnarsson
(2004); Wernholt and Gunnarsson (2005)). The identified models of Berglund
and Hovland (2000); Östring et al. (2003); Östring and Gunnarsson (2004) are
restricted to linear models of only one joint. Hovland et al. (2001); Wernholt
and Gunnarsson (2005) identified models with several joints but their models
contain only drive flexibilities. Furthermore many of the presented techniques
require some a priori knowledge of the system. The drive stiffness, the motor
inertia or the inertia parameters of the links, for instance, are assumed to be
known. The accuracy of these assumed parameters may be limited and fix-
ing one parameter to a wrong value will ruin the fit for the other parameters.
Therefore, using a priori data should only be allowed if these parameters are
known with sufficient accuracy.

From the presented overview it can be concluded that there is still a need
for better identification techniques to estimate the dynamic parameters of in-
dustrial robots containing joint and drive flexibilities. This work is, to a large
extent, devoted to this need. Some of the previously mentioned approaches
provide a starting point to tackle the identification problem. Basically, two ap-
proaches are selected as the promising techniques of this thesis.

The first technique addressed in this thesis is the linear least squares tech-
nique using additional sensors to measure the elastic deformations. Although
measuring all degrees of freedom with external sensors can be quite compli-
cated or even impossible, the use of a linear least squares technique has several
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advantages as compared to nonlinear methods. Most important is that the
global minimum can always be found even without initial values.

The second technique investigated in this thesis is the one presented by
Hovland et al. (2001). Although an extension is required for joint stiffness, a
global solution can also be found for the parameters without the requirement
of initial values. The method is based on frequency domain data, offering the
possibility to interpret intermediate results and provide insight in the model
structure.
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Chapter 3

Robot modelling

A nonlinear finite element method, as described by Jonker (1990), is used to
derive the equations of motion for the Stäubli RX90B robot. In this method, the
equations of motion are derived using Lagrange’s form of Jourdain’s principle.
The SPACAR computer programme, based on this finite element formulation,
has been developed (Jonker and Meijaard (1990)) for the dynamic analysis and
simulation of (elastic) mechanisms that can be assembled from basic compo-
nents, including beams, hinges, sliders, springs and dampers. The programme
also allows the analytic generation of locally linearised models around a nom-
inal trajectory (Jonker (1991); Meijaard (1991)). Interfaces for simulation and
control system design with MATLAB and SIMULINK have been developed by
Jonker and Aarts (1998). In this work, the finite element formulation is ex-
tended with a new lumped mass formulation, suitable for dynamic parameter
identification (Hardeman et al. (2006)).

In this formulation for each rigid beam element, representing a robot link,
a rigid body is defined with equivalent mass and rotational inertia properties.
Furthermore, a vector is defined that describes the centre of mass of this rigid
body with respect to one of the element nodes. This vector, which is not in-
cluded in the original element mass formulation, enables a parameter linear
description for the equations of motion. As a result, the nonlinear finite ele-
ment formulation is suitable for linear least squares parameter identification
techniques. Furthermore the number of elements can be reduced, because no
additional elements are required to describe the centre of mass outside the link
axis.

Accurate prediction of the robot’s tip motion requires that all dominant dy-
namic behaviour is included in the model. Waiboer (2007) developed a rigid
model of the Stäubli RX90B robot using the nonlinear finite element formalism.
His model includes an accurate tribological-based model of the joint friction. In
this work the model is extended to include joint and drive flexibilities (Harde-
man et al. (2005)).
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joint 1

joint 2

joint 3
joint 4

joint 5

joint 6
link 1

link 2

link 3

link 4

link 5

base

Figure 3.1: The Stäubli RX90B six axis industrial robot

Outline

This chapter starts with a description of the Stäubli RX90B industrial robot
manipulator and its motion controller. Section 3.2 describes the kinematics
of the manipulator, including the proposed joint assembly, and serves as an
introduction to the nonlinear finite element method. The dynamic analysis of
the manipulator is presented in section 3.3. An outlook on the use of the results
obtained in this chapter is presented in section 3.4.

3.1 The Stäubli RX90B industrial robot

The Stäubli RX90B industrial robot is illustrated in figure 3.1. The mechanical
manipulator arm of this robot consists of stiff and lightweight robot links that
are interconnected by means of six revolute joints. The manipulator arm also
includes a gravity compensating spring mounted inside link 2, which balances
the unloaded arm.

The first four joints are equipped with a so-called JCS (Stäubli Combined
Joint), which is a sophisticated assembly that includes both a cycloidal trans-
mission and the joint bearing support (Gerat (1994)). The cycloidal transmis-
sion is driven by a servo motor via a helical gear pair, see figure 3.2. The con-
struction of the JCS results in a high gear ratio of the driving system, namely
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servo motor

joint
bearing

cycloidal
transmission

helical
gear pair

Figure 3.2: Schematic representation of the
transmission inside the joint assembly, pic-
ture from Waiboer et al. (2005b)

in the order of 1:100. The last two joints in the robot’s wrist are driven via a
worm and wheel gear.

The servo motors are brushless three-phase servo motors. The three phase
currents are replaced by one equivalent DC current, denoted by ij, in which

index j corresponds to the joint number. The motor constant, denoted by k(a)
j , is

assumed to be constant in the velocity range used for this work. The electrical
current ij supplied by electrical amplifiers is transformed by the servo motor
into a torque delivered at the motor axis. From a kinematical point of view it
is assumed that the transmission is ideal, i.e. no backlash or other nonlinear
kinematic behaviour is present. Subsequently, for a given gear ratio nj, the
driving torque is defined as

τ
(a)
j = k(a)

j njij. (3.1)

To prevent backlash, the transmission is highly prestressed. As a result a large
part of this driving torque is dissipated by friction forces.

The robot is controlled by an industrial Stäubli CS8 motion controller, see
figure 3.3. This controller contains six independent motion controllers, which
compute the current commands for digital current amplifiers located inside
the CS8 controller. The term independent refers to the fact that every servo
motor is equipped with a Single Input Single Output (SISO) controller. The
inputs of the motion controller are the joint reference position r and velocity
ṙ, which must be provided at a rate of 250 Hz. Internally these signals are
upsampled using a so-called micro-interpolator. In addition, a user defined
driving torque feed-forward signal, denoted by τ

( f f )
j , can be provided as well.

All servo motors are equipped with resolvers that provide the motor position
and velocity for the PID (Proportional, Integrating and Derivative) feedback
controller. For a more elaborate description of the Stäubli RX90B manipulator
and the CS8 motion controller the reader is referred to Waiboer (2007).
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-+ +
+

RobotController

e(m), ė(m)

r, ṙ τ(a)

τ(f f )

Figure 3.3: Stäubli RX90B robot with CS8 motion controller

3.2 Kinematical analysis

First, an introduction to the used nonlinear finite element method is presented.
Second, the kinematics of the proposed flexible joint model are expounded.
Third, the so-called geometric transfer functions are introduced.

3.2.1 Finite element representation of robot manipulators

In the presented finite element method a manipulator mechanism is modelled
as an assembly of link elements interconnected by joint elements. This is illus-
trated in figure 3.4, in which the first four joints and links of the Stäubli RX90B
robot manipulator are modelled by three different types of elements: the ma-
nipulator links are modelled by beam elements, the joints are modelled by two
hinge elements each and a truss element is used to model the gravity compen-
sating spring.

The location of each element is described relative to a fixed inertial coordi-

hinge[1],[2]hinge[3],[4]

hinge[5],[6]

hinge[7],[8]

beam[9]

beam[10]

beam[11]

beam[12]

beam[13]

truss[14]

Figure 3.4: Finite element representation of Stäubli RX90B, with the element number-
ing indicated between the squared brackets.
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nate system by a set of nodal coordinates x[k]
i . Some coordinates may be the

Cartesian coordinates of the end nodes, while others are so-called Euler pa-
rameters describing the orientation of orthogonal base vectors or triads rigidly
attached to the element nodes. The superscript k between squared brackets is
added to show that a specific element k is considered. With respect to some
reference configuration of the element, the instantaneous values of the nodal
coordinates represent a fixed number of deformation modes for the element.
The number of deformation modes is equal to the number of nodal coordi-
nates minus the number of degrees of freedom of the element as a rigid body.
The deformation modes are specified by a set of deformation parameters e[k]

i ,
some of which are associated with large relative displacements and rotations
between the element nodes, while others describe small elastic deformations of
the element and will be denoted by ε

[k]
i . The components of the vector of defor-

mation parameters (e[k], ε[k]) are expressed as analytical functions of the vector
of nodal coordinates x[k]. Using this method, we can define a vector function
D[k] for each element k:

(e[k], ε[k]) = D[k](x[k]). (3.2)

A description of the deformation functions for the beam, truss and hinge ele-
ments is presented in appendix A. Up until now, the kinematics of the robot
have been described on an element level. The next section describes the kine-
matics of a joint assembly.

3.2.2 Joint assembly for Stäubli RX90B

Each robot joint j is modelled as a substructure consisting of two hinge ele-
ments: a driving hinge element that provides the driving torque and a flexible
hinge element, describing the joint and drive flexibilities; see figure 3.5.

Each hinge element has two nodes p and q at the element axis, see figure 3.6.
The configuration of the hinge element is determined with two orthogonal tri-
ads (nx̄, nȳ, nz̄) rigidly attached to the two end nodes. For the hinge element,
three deformation functions are defined, namely a large rotation about the el-
ement axis denoted by e[k]

1 and two small orthogonal bending deformations

denoted by ε
[k]
2 and ε

[k]
3 . For a detailed description of the hinge element the

reader is referred to appendix A.
The driving hinge represents the servo motor. The relative rotation e[k]

1 of
the driving hinge is called the drive angle and is defined as the motor rotation
divided by the gear ratio. The flexibilities of the joint are described by the
flexible hinge. Therefore, the bending deformations ε

[k]
2 and ε

[k]
3 of the driving

hinge are prescribed to be zero.
The elastic deformations of the flexible hinge element are assumed to be

small and are denoted by ε[k+1] = (ε
[k+1]
1 , ε

[k+1]
2 , ε

[k+1]
3 ). Deformation ε

[k+1]
1 is
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link j − 1

link j

driving hinge (e[k]
1 )

flexible hinge (ε
[k+1]
1 , ε

[k+1]
2 , ε

[k+1]
3 )

e[k]
1

ε
[k+1]
1

ε
[k+1]
2

ε
[k+1]
3

Figure 3.5: Kinematics joint assembly, in which k = 2j − 1

Rpnx̄

Rpnȳ

Rpnz̄

Rqnx̄

Rqnȳ

Rqnz̄

p q

l → 0

Figure 3.6: Spatial hinge element

called the drive deformation and is used to describe the drive flexibilities. The
two orthogonal bending modes ε

[k+1]
2 and ε

[k+1]
3 are called the joint deforma-

tions and describe the joint flexibilities. The superscript k + 1 is introduced
to distinguish between the driving hinge k and the flexible hinge k + 1. The
joint and element numbering is specified in figures 3.1 and 3.4, respectively.
Hence joint number j is related to element index k according to k = 2j − 1 for
j = 1, · · · , 4.

The total rotation of joint j is called joint angle and is defined by

θj = e[k]
1 + ε

[k+1]
1 . (3.3)

Differentiation of equation (3.3) with respect to time yields the joint velocity,

θ̇j = ė[k]
1 + ε̇

[k+1]
1 . (3.4)
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3.2.3 Geometric transfer functions

A manipulator model can be built up with finite elements by letting them have
nodal points in common. The assemblage of finite elements is realised by defin-
ing a vector x of nodal coordinates for the entire manipulator mechanism. The
deformation functions of the elements can be described in terms of the compo-
nents of x. These equations can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
...

eN(e)

εN(e)+1
...

εN(e)+N(ε)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1(x)
...

DN(e) (x)
DN(e)+1(x)

...
DN(e)+N(ε) (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.5)

or [
e
ε

]
=
[
D(e)(x)
D(ε)(x)

]
, (3.6)

in which N(e) is the total number of deformation parameters of the mecha-
nism associated with large relative displacements and rotations and N(ε) is the
total number of small elastic deformations. Kinematic constraints can be intro-
duced by putting conditions on the nodal coordinates x as well as by imposing
conditions on the deformation parameters (e, ε) which are all assumed to be
holonomic.

The motion of manipulator mechanisms is described by relative degrees
of freedom, which are the N(em) drive angles denoted by e(m) and the N(εm)

elastic deformation parameters of the flexible hinges denoted by ε(m). The
superscript m is used to denote the degrees of freedom. The total number of
degrees of freedom denoted by N(q) equals N(q) = N(em) + N(εm). The degrees
of freedom are combined into the vector of relative generalised coordinates

q =
[

e(m)

ε(m)

]
. (3.7)

The objective of the kinematic analysis is to solve system (3.6) for the vector of
generalised coordinates in equation (3.7).

The solution for the vector of nodal coordinates x is expressed by means of
geometric transfer function F (x) as

x = F (x)(e(m), ε(m)) = F (x)(q). (3.8)

The solution for the dependent deformation coordinate e(c), representing the
elongation of the gravity compensating spring, is expressed by

e(c) = F (ec)(e(m), ε(m)) = F (ec)(q). (3.9)



�

�

“ThesisV2” — Toon Hardeman — 2008/1/6 — 17:11 — page 24 — #44
�

�

�

�

�

�
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By differentiating the transfer function F (x) with respect to time, we obtain the
velocity vector

ẋ =
∂F (x)

∂e(m)
ė(m) +

∂F (x)

∂ε(m)
ε̇(m). (3.10)

Using the differential operator D to represent partial differentiation with re-
spect to the vector of degrees of freedom, we write for equation (3.10)

ẋ = DF (x) · q̇. (3.11)

The second time derivative of equation (3.8) yields the nodal accelerations

ẍ = (D2F (x) · q̇) · q̇ + DF (x) · q̈. (3.12)

Differentiation of equation (3.9) with respect to time yields

ė(c) = DF (ec) · q̇. (3.13)

The geometric transfer functions and their derivatives are determined numer-
ically in an iterative way.

3.3 Dynamical analysis

In the dynamical analysis, forces and torques are related to the robot’s position,
velocity and acceleration by means of the equations of motion. The equations
of motion are derived using Lagrange’s form of Jourdain’s Principle (Lanczos
(1970)). This principle may be defined as follows:

The virtual power of the external forces, inclusive of the inertial forces acting on
an element, is equal to the internal virtual power of the element for every velocity
distribution.

The external forces denoted by f [k]
i (x, ẋ, t), applied at the nodal points, are

introduced as dual quantity of the nodal velocities ẋ[k]
i . The inertia properties of

the element are represented by a mass matrix M[k](x) and a velocity dependent
force vector f [k](in)(x[k], ẋ[k]). The principle of virtual power for element k can
now be formulated as

〈( f [k] − f [k](in) − M[k] ẍ[k]), δẋ[k]〉 = 〈σ[k], δė[k]〉, (3.14)

for all δẋ[k] and δė[k] satisfying

δė[k] = DD[k]δẋ[k]. (3.15)

Equation (3.15) is derived by the differentiation of equation (3.2) with respect
to time. The right hand side of equation (3.14) represents the internal virtual
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power of the element. The components of σ[k] represent the dual components
of ė[k] and may be identified as the stress resultant vector for element k.

First, the equations for mass matrix M[k](x[k]) and the velocity dependent
force vector f [k](in)(x[k], ẋ[k]) corresponding to a rigid body lumped on one of
the nodes of the rigid beam element will be derived. The development of this
section follows Jonker (1989). Second, the constitutive equations will be pre-
sented for the stress resultants σ[k] of the driving and flexible hinges and the
gravity compensating spring. Third, the principle of virtual power and the
results of the first two sections will be combined yielding an acceleration lin-
ear form of the equations of motion in terms of the degrees of freedom q. To
identify the dynamic parameters of the manipulator an expression of the dy-
namic equations linear in these parameters will be presented also. Finally, the
linearised equations of motion will be presented, which will be used for both
simulation and identification.

3.3.1 Lumped mass formulation for a rigid spatial beam ele-
ment

Since the robot links are assumed to be rigid, their inertia properties can be
described by a lumped mass formulation. To derive the corresponding mass
matrix M[k](x[k]) and velocity dependent force vector f [k](in)(x[k], ẋ[k]), let us
consider a rigid body attached to node p of element k. The centre of mass c of
the lumped body is positioned with respect to node p by the position vector
s[k](p), see figure 3.7(a). The nodal coordinates x(p) define the origin of the
(x̄, ȳ, z̄) Cartesian coordinate system fixed in the body, relative to the global
(inertial) coordinate system (x, y, z). In the initial unrotated state of the body,

x

yz

x̄

ȳ
z̄

x(c)

s[k](p)

x(p)

c

p

k

q

(a) Rigid body at node p of element k

x

yz

x̄

ȳ
z̄

s[k](p)

c

p

f (x,c)

f (x,p)

f (ω)

(b) Forces acting on lumped body

Figure 3.7: Lumped mass formulation for a rigid beam element
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the body-fixed coordinate system (x̄, ȳ, z̄) coincides with the global coordinate
system (x, y, z). The orientation of the body-fixed axes (x̄, ȳ, z̄) relative to the
global coordinate system (x, y, z) is then determined by a rotation matrix R(p).
Note that the orientation is the same for all points of a rigid body. To facilitate
notation, the superscript p will be omitted for the position vector s[k](p) and
orientation variables in the remainder of this section. The components of the
rotation matrix are expressed in terms of four Euler parameters (λ0, λ1, λ2, λ3).
According to Nikravesh (1988) the rotation matrix can be written as

R =

⎡⎣λ2
0 + λ2

1 − λ2
2 − λ2

3 2(λ1λ2 − λ0λ3) 2(λ1λ3 + λ0λ2)
2(λ1λ2 + λ0λ3) λ2

0 − λ2
1 + λ2

2 − λ2
3 2(λ2λ3 − λ0λ1)

2(λ1λ3 − λ0λ2) 2(λ2λ3 + λ0λ1) λ2
0 − λ2

1 − λ2
2 + λ2

3

⎤⎦ . (3.16)

By definition the Euler parameters satisfy the constrained equation

λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1, or λTλ = 1. (3.17)

The velocity and angular velocity of the body at a given instant of time are
determined by the vector ẋ(c) representing the velocity of the centre of mass
of the body and the vector λ̇, representing the time derivative of the Euler pa-
rameters. Let ω be the absolute angular velocity of the body, with components
(ωx, ωy, ωz) relative to the global coordinate system (x, y, z). The relationship
between these components and the time derivative of the Euler parameters is
determined by the transformation (Nikravesh (1988))

ω = 2Λλ̇, (3.18)

in which

Λ =

⎡⎣−λ1 λ0 −λ3 λ2
−λ2 λ3 λ0 −λ1
−λ3 −λ2 λ1 λ0

⎤⎦ . (3.19)

Using the identity Λ̇λ̇ = 0 (Nikravesh (1988)) a similar expression exists for
the absolute angular acceleration, namely

ω̇ = 2Λλ̈. (3.20)

The time derivatives of the Euler parameters are not independent and must
therefore satisfy the constraint equations

2λTλ̇ = 0 (3.21)

and

2λ̇
T

λ̇ + 2λTλ̈ = 0, (3.22)
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which are obtained by differentiating equation (3.17) with respect to time.
With the vector ω the velocity vector ẋ(c) of the centre of mass c can be

expressed by

ẋ(c) = ẋ(p) + ω̃s[k]. (3.23)

The tilde operator ˜(.) is used to define a skew symmetric matrix and corre-
sponds to the cross product of two vectors in such a way that

ω̃s[k] = ω × s[k]. (3.24)

The operator × denotes the vector outer product, see Nikravesh (1988).
In order to derive the inertial and gravitational forces and torques as dual

components of the nodal velocities ẋ(p) and λ̇, we turn to the use of a special
case of the principle of virtual power stated earlier. This principle is defined as
follows:

The total power applied by external forces and torques, including all inertial forces
acting on a body, must be zero for all virtual velocity distributions that are associated
with rigid body motion.

Let f (x,c) be the gravity force vector applied to the body’s mass centre c, let
f (x,p) be an external force vector applied to the body at nodal point p and let
f (ω) be an external torque vector acting on the body, see figure 3.7(b). Then the
principle takes the form

〈 f (x,c) − d
dt

(m[k] ẋ(c)), δẋ(c)〉

+ 〈 f (ω) − d
dt

(J[k](c)ω), δω〉 + 〈 f (x,p), δẋ(p)〉 = 0, (3.25)

for all δẋ(p), δẋ(c) and δω satisfying

δẋ(c) = δẋ(p) − s̃[k]δω, (3.26)

δω = 2Λδλ̇. (3.27)

Here, m[k] and J[k](c) are the mass and rotational inertia matrix. The latter rep-
resents the rotational inertia with respect to the mass centre of the body. The
parts d

dt (m[k] ẋ(c)) and d
dt (J[k](c)ω) in equation (3.25) arise from the primitive

forms of the dynamic equations of Newton and Euler. Assuming the gravita-
tion works in the minus z-direction, the gravity force vector f (x,c) is defined
by

f (x,c) = m[k]g = m[k]

⎡⎣ 0
0
−g

⎤⎦ , (3.28)
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in which g represents the gravitation constant.
In the next part of this section the force components in the first term of

equation (3.25) will be converted to force and torque components dual to δẋ(p)

and δω, respectively. Substitution of equation (3.23) and equation (3.26) in this
term gives

〈 d
dt

(m[k] ẋ(c)), δẋ(c)〉 =

〈 d
dt

(m[k] ẋ(p)), δẋ(p)〉 − 〈s̃[k]T d
dt

(m[k] ẋ(p)), δω〉

− 〈 d
dt

(m[k] s̃[k]ω), δẋ(p)〉 + 〈s̃[k]T d
dt

(m[k] s̃[k]ω), δω〉. (3.29)

Using identity ãT = −ã (Nikravesh (1988)) the third term on the right hand
side of equation (3.29) can be rewritten to

〈 d
dt

(m[k] s̃[k]ω), δẋ(p)〉 = 〈m[k]( ˜̇s[k]ω + s̃[k]ω̇), δẋ(p)〉

= 〈m[k]( ˜̃ωs
[k]

ω + s̃[k]ω̇), δẋ(p)〉
= −〈m[k](ω̃ω̃s[k] + s̃[k]Tω̇), δẋ(p)〉. (3.30)

Bringing the matrix s̃[k]T of the fourth right hand side term of equation (3.29)
inside the differentiation yields

〈s̃[k]T d
dt

(m[k] ˜s[k]ω), δω〉 = −〈s̃[k] d
dt

(m[k] ˜s[k]ω), δω〉

= −〈 d
dt

(m[k] s̃[k] s̃[k]ω), δω〉

+ 〈m[k] ˜̇s[k] s̃[k]ω, δω〉

= −〈 d
dt

(m[k] s̃[k] s̃[k]ω), δω〉. (3.31)

In the last step of equation (3.31) the identities ãa = 0 and ãb = −b̃a
(Nikravesh (1988)) are combined to obtain

˜̇s[k] s̃[k]ω = − ˜̃ωs
[k]

ω̃s[k] = 0. (3.32)

After substitution of equations (3.18), (3.27) and (3.29)-(3.31) in the virtual
power equation (3.25) we obtain the desired formulation in terms of Euler pa-
rameters. However, the principle is based on the assumption that the velocity
components of the body are independent. Since the time derivatives for the
Euler parameters are dependent on constraint equation (3.21), the effect of this
condition must be included in the virtual power equation. This can be done
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by using the Lagrange multiplier technique. After applying the above substi-
tutions in equation (3.25) and adding constraint equation (3.21) we obtain

〈 f (x,p) − d
dt

(m[k] ẋ(p)), δẋ(p)〉 + 〈 f (ω) − d
dt

(J[k](p)ω), 2Λδλ̇〉

+ 〈 f (x,c) − m[k](ω̃ω̃s[k] + s̃[k]Tω̇), δẋ(p)〉

+ 〈s̃[k]( f (x,c) − d
dt

(m[k] ẋ(p))), 2Λδλ̇〉 − 〈σ(λ), 2λTδλ̇〉 = 0, (3.33)

for all δẋ(p) and δλ̇. The inertia matrix J[k](p) is defined by

J[k](p) = J[k](c) − m[k] s̃[k] s̃[k], (3.34)

which corresponds to the rotational inertia matrix with respect to point p of the
body. The scalar σ(λ) is the Lagrange multiplier associated with the constrained
condition (3.21).

Since the virtual velocities δẋ(p) and δλ̇ are independent, it follows from
equation (3.33) that

f (x,p) + f (x,c) − m[k] ẍ(p) − m[k](ω̃ω̃s[k] + s̃[k]Tω̇) = 0 (3.35)

and with the transpose of the transformations Λ and λT , we have

f (λ) − 2ΛT d
dt

(J[k](p)Λλ̇) + 2ΛT s̃[k]( f (x,c) − m[k] ẍ(p)) − 2λσ(λ) = 0. (3.36)

The components of the vector f (λ) are defined by

f (λ) = 2ΛT f (ω). (3.37)

These are the four torque components associated with the time derivatives of
the Euler parameters.

In general, the components of the inertia matrix J[k](p) and the position vec-
tor s[k], referred to the global coordinate system (x, y, z), change as the body
rotates. This dependency may be avoided by referring them to the set of axis
(x̄, ȳ, z̄) fixed in the body. Therefore, we introduce the following coordinate
transformations,

J[k](p) = RJ′[k](p)RT , (3.38)

and

s[k] = Rs′[k]. (3.39)

in which J′[k](p) and s′[k] denote the inertia matrix and the position vector with
constant components referred to the body fixed coordinate system (x̄, ȳ, z̄). R
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is the rotation matrix, which can be expressed as the result of two successive
transformations (Nikravesh (1988)) as

R = 2ΛΛ′T , (3.40)

in which

Λ′ =

⎡⎣−λ1 λ0 λ3 −λ2
−λ2 −λ3 λ0 λ1
−λ3 λ2 −λ1 λ0

⎤⎦ . (3.41)

Substitution of equations (3.38), (3.39) into equations (3.35), (3.36) yields with
the identities (3.18), (3.20),

f (x,p) + f (x,c) − m[k] ẍ(p) − 4m[k](Λ̃λ̇Λ̃λ̇s′[k] + R̃s
′[k]

TΛλ̈) = 0 (3.42)

and

f (λ) − 4ΛT d
dt

(ΛΛ′TJ′[k](p)Λ′ΛTΛλ̇)

+ 2ΛTR̃s′
[k]

( f (x,c) − m[k] ẍ(p)) − 2λσ(λ) = 0. (3.43)

Carrying out the differentiation with respect to time in equation (3.43), see ap-
pendix B or Haug (1992), yields

f (λ) − 8Λ̇′TJ′[k](p)Λ′λ̇ − 4Λ′TJ′[k](p)Λ′λ̈

+ 2ΛTR̃s′
[k]

f (x,c) − 2ΛTR̃s′
[k]

m[k] ẍ(p) − 2λσ(λ) = 0. (3.44)

In matrix form, equations (3.42), (3.44) and the constraint equation (3.22) may
be combined as

⎡⎢⎢⎢⎢⎢⎣
M[k]

xx M[k]
xλ 0

M[k]
λx M[k]

λλ 2λ

0 2λT 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ ẍ(p)

λ̈

σ(λ)

⎤⎦+ f [k](in) − f [k](c) = f [k](p), (3.45)
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in which

M[k]
xx = m[k]I, (3.46a)

M[k]
xλ = 2m[k]R̃s′

[k]T
Λ, (3.46b)

M[k]
λx = 2ΛTR̃s′

[k]
m[k], (3.46c)

M[k]
λλ = 4Λ′TJ′[k](p)Λ′, (3.46d)

f [k](in) =

⎡⎢⎣4m[k]Λ̃λ̇Λ̃λ̇Rs′[k]

8Λ̇′TJ′[k](p)Λ′λ̇

2λ̇
T

λ̇

⎤⎥⎦ , (3.46e)

f [k](c) =

⎡⎢⎣ f (x,c)

2ΛTR̃s′
[k]

f (x,c)

0

⎤⎥⎦ , (3.46f)

f [k](p) =

⎡⎣ f (x,p)

f (λ)

0

⎤⎦ . (3.46g)

Matrix M[k] represents the element mass matrix corresponding to a rigid body
k that is attached to node p by a vector s′ [k]. Vectors f [k](in) and f [k](c) represent
the corresponding velocity dependent inertial nodal forces and the gravita-
tional nodal forces, respectively.

Equation (3.45) describes the motion of the body in a form which is linear in
the accelerations. This equation can also be written in a parameter linear form

Φ[k]p[k](l) = f [k](p), (3.47)

or, [
Φ

[k]
xm Φ

[k]
xs 0

0 Φ
[k]
λs Φ

[k]
λl

] ⎡⎢⎣ m[k]

m[k]s′[k]

l[k]

⎤⎥⎦ = f [k](p), (3.48)

in which

Φ
[k]
xm = ẍ(p) − g, (3.49a)

Φ
[k]
xs = 2(Λ̃λ̈ + 2Λ̃λ̇Λ̃λ̇)R, (3.49b)

Φ
[k]
λs = 2ΛT(g̃ − ˜̈x(p))R, (3.49c)

Φ
[k]
λl = 4Λ′TΛ̂′λ̈ + 8Λ̇′TΛ̂′λ̇, (3.49d)

f [k](p) =

[
f (x,p)

2ΛT f (ω)

]
(3.49e)
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and

p[k](l) =

⎡⎢⎣ m[k]

m[k]s′[k]

l[k]

⎤⎥⎦ . (3.50)

Here, l[k] consist of the entries of the inertia matrix J′[k](p), namely l[k] is defined
as

l[k] = [J′[k](p)
xx , J′[k](p)

yy , J′[k](p)
zz , J′[k](p)

xy , J′[k](p)
xz , J′[k](p)

yz ]T (3.51)

and operator (̂.) is defined as

â =

⎡⎣ax 0 0 ay az 0
0 ay 0 ax 0 az
0 0 az 0 ax ay

⎤⎦ . (3.52)

The equations of motion for a lumped mass attached to one of the nodes of the
spatial beam element in acceleration linear form, equation (3.45), and in param-
eter linear form, equation (3.47), will be used for simulation and identification,
respectively. The assembly of the beam elements including the contributions
of the lumped masses will be discussed in section 3.3.3

3.3.2 Constitutive equations

This section describes the constitutive equations for the joints and the grav-
ity compensating spring. First, the existing joint friction model for a rigid
Stäubli RX90B will be introduced. Then this model will be extended for a flexi-
ble joint. Next, the constitutive equations for the driving hinge and the flexible
hinge will be presented. Finally, the constitutive equation for the gravity com-
pensating spring will be given.

Friction model for a rigid joint

Several models are proposed to describe the friction characteristics for indus-
trial robots. An overview of the proposed models can be found in Armstrong-
Hélouvry (1991); Armstrong-Hélouvry et al. (1994); Olsen et al. (1998). More
recently, Waiboer et al. (2005b) analysed viscous friction and friction caused by
asperity contacts inside gears and the prestressed roller bearings of industrial
robots and, in particular, the Stäubli RX90B robot. This tribological based fric-
tion model accurately describes the friction behaviour in the full velocity range
with a minimal and physically sound parametrisation. First, an overview of
this model will be given. Next this friction model, which was original devel-
oped for a rigid drive so ε[k+1] ≡ 0, is adapted for a flexible joint.
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According to Waiboer et al. (2005b) the sliding friction model for joint
j = 1, · · · , 4 is described by:

τ
( f ,s)
j (θ̇j) = τ

(a,0)
j e

−

⎛⎝ |θ̇j |

θ̇
(s)
j

⎞⎠δ
(a)
j

︸ ︷︷ ︸
asperity part

+ c(v)
j |θ̇j|(1−δ

(v)
j )︸ ︷︷ ︸

viscous part

, (3.53)

in which |θ̇j| denotes the absolute value of the joint velocity. Note that for a

rigid transmission the joint velocity θ̇j is equal to the drive velocity ė[k]
1 . For

each joint j, there are five parameters: the static asperity friction torque τ
(a,0)
j ,

the Stribeck velocity θ̇
(s)
j , the Stribeck velocity power δ

(a)
j , the viscous friction

coefficient c(v)
j and the viscous friction power δ

(v)
j . Waiboer et al. (2005b) esti-

mated the values of these parameters by dedicated identification experiments.
The parameters τ

(a,0)
j and c(v)

j are strongly temperature dependent, so they can
change over time, whereas the other parameters are considered constant. The
reader is referred to Waiboer et al. (2005b) for further explanation about this
friction model.

The sliding friction model presented in equation (3.53) assumes a positive
joint velocity. For negative velocities, the sign of the friction torque should be
reversed. For joint velocities equal to zero the sliding friction model is unde-
fined and around velocity reversals the asperity function model shows a dis-
continuity. During forward simulation a smoothed version of equation (3.53)
is used

τ
( f )
j (θ̇j) =

2
π

arctan(c(a) θ̇j)τ
( f ,s)
j (θ̇j). (3.54)

The constant c(a) should be chosen sufficiently high. More sophisticated mod-
els exist to describe the velocity reversals, see for example Dahl (1977) and
Canudas De Wit et al. (1995). However, these are beyond the scope of this
work.

Friction model for a flexible joint

Next the joint friction model of equation (3.53) will be adapted for the flexible
joint. Most of the asperity contacts show up in the pre-stressed joint bearings.
In both the flexible and rigid joint the corresponding sliding velocity is defined
by the joint velocity θ̇j, which describes the relative velocity between two links,
see equation (3.4) and figure 3.5 on page 22. Therefore the asperity part of
equation (3.53) is applicable for the flexible model as well.

The origin of the viscous part is less evident. There are contributions from
several components in the joint with sliding velocities governed by ė[k]

1 as well



�

�

“ThesisV2” — Toon Hardeman — 2008/1/6 — 17:11 — page 34 — #54
�

�

�

�

�

�

34 Chapter 3. Robot modelling

as by θ̇j. Therefore the viscous friction model of equation (3.53) should be split
up into two parts: one describing the viscous friction torque on the motor side
as a function of ė[k]

1 and one describing the viscous friction on the link side as a
function of θ̇j. However, accurate identification of these two parts requires in-
dependent measurements of the corresponding friction torques and velocities.
In case of the Stäubli RX90B only the drive velocity ė[k]

1 and the external driving

torque τ
(a)
j can be measured accurately. Therefore it is very hard to identify the

two viscous friction parts independently. In stead of splitting the viscous fric-
tion into two ill identifiable parts, it is preferred to keep them combined in one
viscous contribution as a function of one velocity for which the joint velocity θ̇j

is taken. This simplification is justifiable since the difference between ė[k]
1 and

θ̇j has a negligible influence on the viscous friction torque τ
( f ,s)
j . As a result

equation (3.53) is applicable to the flexible joint as well.

The friction torque τ
( f )
j (θ̇j) should describe a torque between two links de-

pending on joint velocity θ̇j. In the joint assembly of figure 3.5 on page 22 this
torque is not easily included as there is not a single element connecting both
links. The joint assembly could be extended with an additional hinge element,
that describes this torque and the corresponding joint angle θj. Instead, the

friction torque τ
( f )
j (θ̇j) will be included in the constitutive equations of both

the driving and flexible hinge. In section 3.3.3 on page 40 it will be shown that
both implementations are dynamical equivalent, which means that the friction
power dissipated in the two hinges is equal to the friction power that would
have been dissipated if an additional hinge element was used. The constitutive
equations of the driving and flexible hinge will be presented below.

Constitutive equation driving hinge

In equation (3.1), page 19, τ
(a)
j is defined as the external driving torque of joint j.

Part of this torque is dissipated by the joint friction torque τ
( f )
j (θ̇j). As shown

by Spong (1987) and discussed in section 2.1.2, the inertia properties of the
driving system for robots with high transmission ratios may be described by
a single rotational inertia. This rotational inertia is called drive inertia and is
incorporated into the finite element model by adding a rotational inertia J[k](a)

to the deformation e[k]
1 of the driving hinge. For the torsional stress resultant

σ
[k]
1 of the driving hinge k this yields

σ
[k]
1 = −(τ[k](a) − τ[k]( f ) − J[k](a) ë[k]

1 ), (3.55)
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in which

τ[k]( f ) = τ
( f )
j (θ̇j), (3.56)

τ[k](a) = τ
(a)
j (3.57)

and k = 2j − 1. The first minus sign on the right hand side of equation (3.55)
is the result of different sign conventions for the stress resultant σ

[k]
1 and the

driving torque τ[k](a).

Constitutive equations flexible hinge

For the flexible hinge, the torsion moment σ
[k+1]
1 and the two bending mo-

ments σ
[k+1]
2 , σ

[k+1]
3 are linearly related to the deformations ε[k+1] and their

time derivatives ε̇[k+1]. Furthermore, the joint friction torque τ
( f )
j is included

in the torsion moment σ
[k+1]
1 as well, yielding

σ
[k+1]
1 = k[k+1]

1 ε
[k+1]
1 + d[k+1]

1 ε̇
[k+1]
1 + τ[k+1]( f ), (3.58)

in which

τ[k+1]( f ) = τ
( f )
j (θ̇j), (k = 2j − 1) (3.59)

and

σ
[k+1]
i = k[k+1]

i ε
[k+1]
i + d[k+1]

i ε̇
[k+1]
i , (3.60)

for i = 2, 3. Parameter k[k+1]
1 represents the drive stiffness and k[k+1]

i for i = 2, 3

represents the joint stiffness. The parameter d[k+1]
i for i = 1, 2, 3 describes vis-

cous damping. Figure 3.8 depicts the dynamical model that is described by the
constitutive equations of driving and flexible hinge.

Constitutive equation gravity compensating spring

The normal force in the gravity compensating spring, denoted by σ(ec), is lin-
early related to the deformation e(c) by a spring stiffness k(c) and an additional
pre-stress σ(c0), giving the constitutive equation

σ(ec) = k(c)e(c) + σ(c0), (3.61)

in which e(c) is defined by equation (3.9).
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joint friction: τ
( f )
j (θ̇j)

k[k+1]
1 k[k+1]

2,3J(a)
j

τ
(a)
j

driving hinge k flexible hinge k + 1link j − 1 link j

Figure 3.8: Dynamical model of joint j. To improve the visibility the dampers d[k+1]
i ,

that are modelled in parallel with the springs k[k+1]
i , are omitted in this figure.

3.3.3 Equations of motion in acceleration linear form

Let M(x) be the global mass matrix and f (x, ẋ, t) the vector of external nodal
forces, including gravitational forces and velocity dependent inertia forces
f (in)(x, ẋ, t) obtained by assembling the inertia contributions of the lumped
bodies of the links, see equation (3.45). Let vectors σ(em) and σ(εm) represent
the vectors of stress resultants dual to drive velocity ė(m) and the time deriva-
tives of the elastic deformations ε̇(m), as defined by equations (3.55), (3.58) and
(3.60). Furthermore, let σ(ec) represent the stress resultant in the gravity com-
pensating spring dual to ė(c). According to the principle of virtual power for
the external forces f , the inertial forces Mẍ and the internal stress vectors σ(em),
σ(εm) and σ(ec), we obtain

〈( f − Mẍ), δẋ〉 = 〈σ(em), δė(m)〉 + 〈σ(εm), δε̇(m)〉 + 〈σ(ec), δė(c)〉, (3.62)

for all virtual velocities δẋ, δė(m), δε̇(m) and δė(c), which satisfy the instanta-
neous kinematic constraints (3.10) and (3.13), respectively.
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Equations of motion in terms of the generalised coordinates q

Substitution of kinematic relations (3.10), (3.12) and (3.13) in virtual power
equation (3.62) yields the reduced equations of motion[

M̆ee M̆eε

M̆εe M̆εε

] [
ë(m)

ε̈(m)

]
+

[
DemF (x)T

DεmF (x)T

] [
M(D2F (x) · (ė(m), ε̇(m))) · (ė(m), ε̇(m)) − f

]
+

[
DemF (ec)T

DεmF (ec)T

]
σ(ec) = −

[
σ(em)

σ(εm)

]
, (3.63)

with the reduced system mass matrices

M̆ee = DemF (x)TMDemF (x), M̆eε = DemF (x)TMDεmF (x),
M̆εe = DεmF (x)TMDemF (x), M̆εε = DεmF (x)TMDεmF (x).

(3.64)

Matrix M̆ee represents the reduced system mass matrix of the links correspond-
ing to drive angles e(m). The matrices M̆eε and M̆εe represent the dynamic cou-
pling between the gross rigid motion and the flexible deformation of the joints.

Substitution of the constitutive equations (3.55), (3.58) and (3.60) for stress
resultants σ(em) and σ(εm) and equation (3.61) for stress resultant σ(ec) into the
reduced equations of motion (3.63) yields

M̄q̈ + DF (x)T [M(D2F · q̇) · q̇ − f ] + σ(d) + σ(s) + Fτ( f ) = B(u)τ(a). (3.65)

The reduced system mass matrix M̄ is defined by including the drive inertias
into the reduced mass matrix of links M̆, yielding

M̄ee = M̆ee + diag(J(a)), M̄eε = M̆eε,
M̄εe = M̆εe, M̄εε = M̆εε,

(3.66)

in which J(a) is the vector with drive inertias. Vector σ(d) describes the viscous
damping and is defined by

σ(d) = Dq̇, (3.67)

in which

D =
[

0 0
0 Dεε

]
. (3.68)

Diagonal damping matrix Dεε is assembled from the viscous damping param-
eters of the flexible hinge elements. Vector σ(s) represents the stresses arising
from structural flexibilities and is defined by

σ(s) = Kq + DF (ec)T(k(c)F (ec) + σ(ec0)), (3.69)
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in which

K =
[

0 0
0 Kεε

]
. (3.70)

Matrix Kεε is a diagonal structural stiffness matrix assembled from the joint
and drive flexibilities of the flexible hinge elements. Vector τ( f ) is assembled
from the nonlinear joint friction torques presented in equation (3.54) and F is a
N(q) × N(em) matrix defined by

F =

⎡⎣I
I
0

⎤⎦ , (3.71)

in which I is an N(em) × N(em) identity matrix. Matrix B(u) is the N(q) × N(em)

input matrix defined by

B(u) =
[

I
0

]
. (3.72)

Equations of motion in terms of generalised coordinates q̆

The reduced equations of motion will be derived for a new set of generalised
coordinates that is denoted by q̆ and defined as

q̆ =

⎡⎢⎢⎢⎣
e(m)

θ(m)

ε(2m)

ε(3m)

⎤⎥⎥⎥⎦ . (3.73)

Vectors ε(2m) and ε(3m) contain the joint flexibilities ε
[k+1]
2 and ε

[k+1]
3 , respec-

tively. The relation between the vectors q and q̆ is given by

q =

⎡⎢⎢⎣
e(m)

ε(1m)

ε(2m)

ε(3m)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
I 0 0 0
−I I 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

e(m)

θ(m)

ε(2m)

ε(3m)

⎤⎥⎥⎥⎦ = Tq̆, (3.74)

in which ε(1m) is a vector containing the drive flexibilities ε
[k+1]
1 . Substitution

of this relation into the reduced equations of motion (3.65) yields

TTM̄T ˘̈q + TTDF (x)T [M(D2F (x) · T ˘̇q) · T ˘̇q − f ]

+ TTσ(d) + TTσ(s) + TTFτ( f ) = TTB(u)τ(a). (3.75)
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In the presented joint model, the rotation axes described by the deformation
parameters e[k]

1 and ε
[k+1]
1 have the same the spatial orientation with respect to

the fixed inertia coordinate system, yielding

DemF (x) = Dεm
1
F (x). (3.76)

Substitution of this relation into the reduced mass matrix of equation (3.75)
yields

M̄ee − diag(J(a)) = M̄eε1 = M̄ε1e = M̄ε1ε1 , (3.77a)

M̄eε2 = M̄ε1ε2 = M̄T
ε2e = M̄T

ε2ε1
, (3.77b)

M̄eε3 = M̄ε1ε3 = M̄T
ε3e = M̄T

ε3ε1
, (3.77c)

in which the reduced mass matrix M̄ is partitioned according to

M̄ =

⎡⎢⎢⎣
M̄ee M̄eε1 M̄eε2 M̄eε3
M̄ε1e M̄ε1ε1 M̄ε1ε2 M̄ε1ε3
M̄ε2e M̄ε2ε1 M̄ε2ε2 M̄ε2ε3
M̄ε3e M̄ε3ε1 M̄ε3ε2 M̄ε3ε3

⎤⎥⎥⎦ . (3.78)

Substitution of relation (3.77) into the reduced mass matrix of equation (3.75)
yields

TTM̄T =

⎡⎢⎢⎣
diag(J(a)) 0 0 0

0 M̄θθ M̄θε2 M̄θε3
0 M̄ε2θ M̄ε2ε2 M̄ε2ε3
0 M̄ε3θ M̄ε3ε2 M̄ε3ε3

⎤⎥⎥⎦ , (3.79)

in which

M̄θθ = M̄ε1ε1 = M̆ee, (3.80a)

M̄θ1ε1 = M̄ε1ε2 = M̄T
ε1θ1

= M̄T
ε2ε1

, (3.80b)

M̄θ1ε2 = M̄ε1ε3 = M̄T
ε2θ1

= M̄T
ε3ε1

. (3.80c)

From equation (3.79) it can be seen that the applied coordinate transformation
results in a simpler reduced mass matrix without coupling terms between the
drive angles e(m) and the other degrees of freedom. This dynamical coupling
is taken care of by the damping and stiffness matrices. Carrying out the calcu-
lations for equation (3.75) yields

TTDT =

⎡⎢⎢⎣
Dε1ε1 −Dε1ε1 0 0
−Dε1ε1 Dε1ε1 0 0

0 0 Dε2ε2 0
0 0 0 Dε3ε3

⎤⎥⎥⎦ , (3.81)
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TTKT =

⎡⎢⎢⎣
Kε1ε1 −Kε1ε1 0 0
−Kε1ε1 Kε1ε1 0 0

0 0 Kε2ε2 0
0 0 0 Kε3ε3

⎤⎥⎥⎦ (3.82)

and

TTF =

⎡⎢⎢⎣
0
I
0
0

⎤⎥⎥⎦ . (3.83)

The partitioning of the matrices is equal to the one used for the reduced system
mass matrix, see equation (3.78). Equation (3.83) demonstrates the statement of
section 3.3.2, namely that the two joint friction torques τ[k]( f ) and τ[k+1]( f ) that
are described by the constitutive equations for the driving and flexible hinge,
equation (3.55) and (3.58) respectively, are dynamical equivalent to a single
joint friction torque τ

( f )
j dual to the joint velocity θ̇j, provided that τ[k]( f ) =

τ[k+1]( f ) = τ
( f )
j for k = 2j − 1.

The equations of motion presented in this section are written in an accel-
eration linear form. The equations can also be written linear to the physical
parameters. This will be the topic of the next section.

3.3.4 Equation of motion in parameter linear form

For the identification of the unknown dynamic parameters, the equations of
motion will be written in a parameter linear form by using the result of equa-
tion (3.47). Let Φ(x, ẋ, ẍ) be the global system matrix obtained by assembling
the lumped matrices Φ[k] and let p(l) be the corresponding parameter vector.
Substitution into equation (3.62) yields

〈( f (r) − Φp(l)), δẋ〉 = 〈σ(em), δė(m)〉+ 〈σ(εm), δε̇(m)〉+ 〈σ(ec), δė(c)〉, (3.84)

in which f (r) is the external force vector exclusive the inertia and gravitational
forces, which are already included in the term Φp(l). This must hold true for
all velocities δẋ satisfying the instantaneous kinematic constrains (3.10) and ve-
locity δė(c) that should satisfy equation (3.13). Note that for most applications
f (r) consists of only the support forces of the base, for which the dual virtual
velocities have to be zero. Consequently, the contribution of these forces to the
virtual power of the manipulator is zero and therefore their contribution can
be omitted. Substitution of equations (3.10,3.55) and (3.60) into equation (3.84)
yields

Φ̄(q, q̇, q̈)p =
[

τ(a)

0

]
, (3.85)
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in which

Φ̄ =

[
DemF (x)TΦ diag(ë(m))
DεmF (x)TΦ 0

· · ·

diag(e(θ̇
(m)/θ̇

(s))δ(a)
) diag( θ̇

(m) (1−δ(v))
)

diag(e(θ̇
(m)/θ̇

(s))δ(a)
) diag( θ̇

(m) (1−δ(v))
)

· · ·

0 0 DemF (ec)Tė(c) DemF (ec)T

diag(ε̇(m)) diag(ε(m)) DεmF (ec)Tė(c) DεmF (ec)T

]
(3.86)

and parameter vector p is defined as

p = (p(l), J(a), τ(a,0), c(v), d, k, k(c), σ(c0)). (3.87)

Vectors J(a), τ(a,0), c(v), k, d represent the parameter vectors containing drive
inertias, static asperity friction, viscous friction, stiffness and structural damp-
ing coefficients, respectively. Note that it is assumed that the parameters θ̇

(s)
j ,

δ
(a)
j and δ

(v)
j in the friction model are known from previous experiments, see

e.g. Waiboer (2007)
To analyse the response of the robot manipulator to harmonic inputs, but

also to reduce simulation time, the nonlinear equations of motion will be lin-
earised around a predefined trajectory.

3.3.5 Linearised equations of motion

Given the nonlinear equations of motion in equation (3.65), now consider small
perturbations around a predefined nominal trajectory (q0, q̇0, q̈0) in such a way
that the actual variables are of the form

q = q0 + δq,
q̇ = q̇0 + δq̇,
q̈ = q̈0 + δq̈,

τ(a) = τ
(a)
0 + δτ(a). (3.88)

The prefix δ denotes a perturbation and should not be confused with the virtual
velocities in equation (3.62). A symbol subscripted with 0 is evaluated along
the nominal trajectory. Expanding equations (3.8) and (3.11) in their Taylor
series expansions and disregarding second and higher order terms results in
the linear approximations

δx = DF 0δq,

δẋ = DF 0δq̇ + (D2F 0 · q̇0) · δq̇. (3.89)
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Linearisation of the reduced equations of motion (3.65) around the nominal
trajectory (q0, q̇0, q̈0) results (Jonker (1991)) in

M̄0δq̈ + (D0 + C0 + F0)δq̇ + (K0 + G0 + N0)δq = B(u)δτ(a). (3.90)

Matrix M̄0 is the system mass matrix as in equation (3.65). Matrix D0 is the
structural damping matrix as in equation (3.68). Matrix C0 is the velocity sen-
sitivity matrix. Matrix F0 is the linearised friction matrix and K0 denotes the
structural stiffness matrix. G0 and N0 are the geometric stiffening matrix and
the dynamic stiffening matrix, respectively. Matrices M̄0, D0, F0, K0 and G0 are
symmetric, whereas matrices C0 and N0 are not. These matrices are calculated
(Jonker (1991)) by

C0 = DF T
0 [Dẋ f (in)DF 0 + 2M0D2F 0 · q̇0],

K0 = K + DF (ec)T
0 k(c)DF (ec)

0 ,

G0 = −D2F T
0 · ( f − M0 ẍ0),

N0 = DF T
0 [(−Dx f (in) + DxM0 ẍ0)DF 0

+ M0(D2F 0 · q̈0 + (D3F 0 · q̇0) · q̇0) + Dẋ f (in)D2F 0 · q̇0]. (3.91)

The linearised friction matrix F0 is a diagonal matrix obtained by linearisation
of equation (3.54) yielding

F0 =

⎡⎢⎢⎣
diag(τ̄( f )) 0 0 0

0 diag(τ̄( f )) 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , (3.92)

in which the vector with linearised joint friction torques τ̄( f ) is defined by

τ̄
( f )
j =

2
π

arctan(c(a) θ̇0,j)τ̄
( f ,s)
j +

2
π

c(a)

1 + (c(a) θ̇0,j)2
τ

( f ,s)
j (3.93)

and

τ̄
( f ,s)
j = τ

(a)
j

δ
(a)
j

θ̇
(s)
j

⎛⎝ |θ̇0,j|
θ̇
(s)
j

⎞⎠(δ
(a)
j −1)

e

⎛⎝ |θ̇0,j |

θ̇
(s)
j

⎞⎠δ
(a)
j

+ c(v)
j (1 − δ

(v)
j )|θ̇0,j|(−δ

(v)
j ), (3.94)

which are both functions of the nominal joint rotation θ̇0 = ė(m)
0 + ε̇

(1m)
0 . Note

that all the matrix coefficients of equation (3.90) can vary over time, since they
depend on the nominal position, velocity and acceleration of the manipulator.
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3.4 Discussion

A variety of representations for the equations of motion have been presented
in this chapter. The most general form is that of the nonlinear equations of
motion presented in section 3.3.3. This representation is implemented in the
computer program SPACAR, which is used for the dynamic simulations of the
robot manipulator. Furthermore the so called perturbation method (Jonker and
Aarts (2001)) is used for simulations. In this method the vibrational motion of
the manipulator is modelled as a first-order perturbation of the nominal rigid
link motion. For that purpose, the nonlinear flexible dynamic model is split
into two parts. A rigidified nonlinear system describes the nominal rigid link
motion of the manipulator and the linearised equations of motion presented in
section 3.3.5 describe the vibrational motion of the manipulator. The perturba-
tion method is implemented in SPACAR as well.

The next chapter presents a linear identification technique which can be
used to identify the unknown dynamic parameters of the presented robot
model from experimental data. This method makes extensive use of the pa-
rameter linear formulation presented in section 3.3.4. In chapter 5, an inverse
eigenvalue method will be presented to identify the dynamic parameters of
the joints. The inverse eigenvalue problem is related to the linearised equa-
tions of motion that are presented in section 3.3.5. In addition the manipula-
tor’s response to harmonic driving torques is directly related to the linearised
equations of motion. The identification of this response will be the topic of
chapter 6.
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Chapter 4

Linear identification methods

The unknown dynamic parameters of the robot model presented in chapter 3
need to be identified from experimental data. An overview of linear identifica-
tion methods is presented in this chapter.

Outline

Section 4.1 presents a static identification method which can be used to iden-
tify the stiffness parameters of the drives and joints. In section 4.2, a linear
least squares identification method will be presented for the identification of
all dynamic parameters.

4.1 Stiffness measurements on the Stäubli RX90B

The stiffness parameters of the robot model presented in the previous chapter
are estimated using static stiffness measurements. An overview of the setup is
shown in figure 4.1. Using a rope, a pulley and combinations of deadweights,
a force is applied to the tip of the robot. The deadweights, in a range of 0-19 kg,
are suspended to the free end of the cable. The force on the tip of the robot acts
as a moment on the joints. By changing the configuration of the robot and the
pulley, the joints are loaded with moments in different directions.

By measuring the relative change in orientation between two succeeding
links, the deformation of the joint in between is measured. The orientations of
the links are measured using a Krypton Rodym 6D camera system. This system
measures the 3D position of up to six markers. A description of this system is
given in appendix C. The accuracy of the camera system in a plane parallel to
the camera is higher than perpendicular to this plane. Therefore, most of the
measurements are done in this 2D space. Four markers are used to measure
one elastic deformation, see the example in figure 4.1. A marker is mounted
on both ends of a link. The two markers on each link define a line. The change
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pulley

rope

deadweight

robot

marker

ψ

d

Figure 4.1: Setup to measure the joint stiffness of the Stäubli RX90B at joint 2.

of angle between two lines is the elastic deformation. In figure 4.1 this angle is
denoted by the symbol ψ.

To measure the drive stiffness of the joints, the robot controller is switched
on. During a measurement the integrating action of the feedback controller
keeps the motor at a predefined location, also when an external moment is
applied. This has been verified by measuring the motor rotation with resolvers
installed on the servo motors.

Starting from an unloaded configuration the force on the tip is increased in
7 discrete steps and then the force is decreased until the system is unloaded
again. From the geometry of the robot, the perpendicular distance d between
the rotation point of the joint and the applied force is known, see figure 4.1 for
an explanation. This distance is used to compute the moment that the force on
the tip applies to the joint under consideration.

Figure 4.2 presents the results for the drive and joint flexibilities of joints
1-3. For the joint flexibilities of joint 3 only data with increasing moments is
available. It is assumed that the joint stiffnesses, corresponding to deforma-
tions ε

[k+1]
2 and ε

[k+1]
3 , are equal. This is a reasonable assumption for the first

four joints, because the joints including the bearings are rotation symmetric.
Using linear regression techniques a straight line is fit through the mea-

sured data. The line is included in figure 4.2. The line is estimated as a function
of the applied load. The reason for this is that the measurement accuracy of the
applied loads is expected to be higher than the measurement accuracy of the
elastic deformations. The measured marker displacement for each loading step
is about 0.1 mm and the specified 95% reliability interval for a calibrated cam-
era system is ±0.014 mm for measurements in the x,y-plane (2 times the stan-
dard deviation presented in table C.2). This accuracy is specified for measure-
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Figure 4.2: Measured drive and joint deformation as a function of the moments applied
to the corresponding joint. The measurements with increasing load are denoted by (·),
the measurements with decreasing load by (×). The line (—) is estimated using linear
regression.
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joint number drive stiffness joint stiffness Unit

1 k[2]
1 = 2.8 × 105 k[2]

2,3 = 4.4 × 105 N m rad−1

2 k[4]
1 = 2.7 × 105 k[4]

2,3 = 2.4 × 105 N m rad−1

3 k[6]
1 = 1.0 × 105 k[6]

2,3 = 2.1 × 105 N m rad−1

4 k[8]
1 = 0.9 × 105 k[8]

2,3 = 1.6 × 105 N m rad−1

Table 4.1: Stiffness parameter estimated from static identification experiments

ments over a measurement volume of 1 m3. In reality, the displacements are
within a few mm, so the actual accuracy should be better. However, Scheringa
(2006) demonstrated that the measurement system is no longer within its ac-
curacy specifications. Overall, it is expected that it is reasonable to assume a
measurement accuracy of ±0.014 mm for these experiments. The distance be-
tween the 2 markers on each link varies between 442 mm and 735 mm. By
taking an average value of 500 mm, the 95% reliability interval of the angle
measurements is given by: ±arctan(2 · 0.014/500) = 0.6 × 10−4 rad. The drive
stiffness of joints 1 and 4 are measured in the x,z-plane, giving a 95% reliability
interval of ±3 × 10−4 rad.

Figures 4.2(b) and 4.2(e) show that the deformations measured with increas-
ing load are smaller than the ones measured with decreasing load. This be-
haviour indicates that some hysteresis is present. However, the measurements
of the drive flexibility of joint 1, see figure 4.2(a), show the opposite behaviour.
It is unclear whether the hysteresis is actually present or if this behaviour is
caused by measurement errors. The 95% reliability interval of the angle mea-
surements predict variations of this order, but in that case a more stochastic
error behaviour is expected. Another explanation would be drift on the cam-
era measurements due to ambient temperature fluctuations or friction in the
pulley, for example.

Although the accuracy is limited, the data can be used for a rough estima-
tion of the unknown stiffness parameters. Namely, the inverses of the slopes of
the estimated lines correspond to the stiffness parameters. The estimated val-
ues can be found in table 4.1. The table shows that the drive and joint stiffness
are of the same order of magnitude. This confirms the statement in section 1.1
that both drive and joint flexibility should be included in the model.

4.2 Linear least squares identification of model pa-
rameters

A linear least squares identification method is proposed to identify the dy-
namic parameters of the model presented in chapter 3. First, an overview of
the identification method is presented. The method is then demonstrated with
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a simulation example. Finally, the complications that showed up during the
experimental validation of this method are discussed.

4.2.1 Linear least squares method

The dynamic parameters of the robot are estimated using the parameter linear
formulation of the equations of motion presented in section 3.3.4. The robot
is moved along a prescribed trajectory while the driving torques τ̂(a) and all
N(q) degrees of freedom q̂ are measured at time steps tn for n = 1, · · · , N(t).
The symbol (.̂) is added to express that measured quantities are estimations
and not necessarily the true values. Besides the positions q̂ also the veloci-
ties ˆ̇q and accelerations ˆ̈q should be known. They are computed afterwards
by numerical differentiation of the positions q̂. Let regression matrix A and
measurement vector y be obtained by sampling the system matrix Φ̄(tn) (de-
fined in equation (3.86)) and the driving torques τ̂(a)(tn) along the measured
trajectory (q̂, ˆ̇q, ˆ̈q), this yields

y =

⎡⎢⎢⎢⎢⎢⎣
τ̂(a)(t1)

0
...

τ̂(a)(tN(t) )
0

⎤⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎣ Φ̄(q̂(t1), ˆ̇q(t1), ˆ̈q(t1))
...

Φ̄(q̂(tN(t) ), ˆ̇q(tN(t) ), ˆ̈q(tN(t) ))

⎤⎥⎦ . (4.1)

The dynamic parameter vector p, defined in equation (3.87), the measurement
vector y and the regression matrix A are related as

y = Ap + ρ, (4.2)

in which the vector ρ represents the residual torques arising from measurement
noise and model errors. The dynamic parameters are found by solving the
linear least squares problem

p̂ = arg min
p

||y − Ap||2. (4.3)

According to Strang (1976) the regression matrix A can be decomposed us-
ing a singular value decomposition as

A = UΣVT , (4.4)

in which

Σ =
[

S 0
0 0

]
, S = diag(σ1, σ2, · · · , σl). (4.5)
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The integer l corresponds to the rank of matrix A, which equals the number
of non-zero singular values σi. The matrices U and V are orthogonal matrices
that are written as U = [U1, U2] and V = [V1, V2], in which

U1 = [u1, u2, · · · , ul ], U2 = [ul+1, ul+2, · · · , uN(t)×N(q) ],

V1 = [v1, v2, · · · , vl ], V2 = [vl+1, vl+2, · · · , vN(p) ]. (4.6)

Using the singular value decomposition, a solution of the linear least squares
problem (4.3) can be found as

p̂(E) = V1S−1UT
1 y, (4.7)

in which S−1 = diag(1/σ1, 1/σ2, · · · , 1/σl); see e.g. Shome et al. (1998).
Not all parameters of the vector p can be identified uniquely, since some of

them do not affect the dynamic response at all or affect the dynamic response
only in linear combinations with other parameters. The essential parameter
space of A is the smallest subspace that contains the solution of equation (4.3).
The dimension of this subspace, denoted by the number l, is equal to the rank
of matrix A. The vectors v1, v2, · · · , vl , i.e. the submatrix V1, provide an or-
thogonal basis for the essential parameter space. The estimated parameter vec-
tor, presented in equation (4.7), is a linear combination of the columns of V1.
Therefore, this estimated parameter vector lies in the essential parameter space.
Of course it is not a unique solution of equation (4.3) because any linear com-
binations of columns of V2 can be added to this solution without affecting the
residual vector ρ. To compare two parameter vectors it is therefore not mean-
ingful to compare the individual parameters in each vector. Yet two parameter
vectors describe systems with identical physical behaviour if their projection
into the essential parameter space is identical. E.g. the estimated parameter
vector in equation (4.7) can be compared to an arbitrary vector like the actual
or physical parameter vector p when the latter is also projected into the essen-
tial parameter space, i.e.

p(E) = V1VT
1 p, (4.8)

in which p(E) denotes the vector p projected onto the essential parameter space.
Note that in the equations of motion (3.85) the values of all parameters from
the vector p can be replaced by the corresponding values for the parameters
in vector p(E) without changing the computed torques τ(a), even though these
parameters in p(E) may have unphysical values like negative masses.

Mathematically the rank of matrix A only depends on the model structure.
In practice the size of the parameters, the excitation signal and the amount of
measurement noise also influence the number of parameters that can be iden-
tified uniquely and reliably. If the contribution of a parameter to the response
of the robot for a given excitation is smaller than the amount of measurement
noise, then that parameter cannot be identified reliably. To incorporate a priori
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e(m), ė(m)

ε(m)
r, ṙ τ(a)

τ(f f )

Figure 4.3: Closed-loop system

known information about accuracies or uncertainties of A and y in the optimi-
sation, Lawson and Hanson (1974) describe a left multiplication of regression
matrix A and measurement vector y by a weighting matrix W(L). In addition,
a right multiplication of matrix A with a scaling matrix W(R) is presented. This
matrix W(R) is used to include a priori information about parameter vector p
in the estimation problem.

The effect of a parameter on the dynamic response of the robot can only be
measured if the trajectory is sufficiently exciting for the considered parameter.
Keeping the experimental limitations in mind, the following approach is sug-
gested. Parameters related to position dependent behaviour such as gravita-
tion can only be identified if the measurement data is obtained from sufficiently
distinguishable robot configurations. Therefore, the robot is programmed to
follow a trajectory r along various configurations in its work space. For stabil-
ity and safety reasons, the experiments are carried out in closed-loop. Problems
arise regarding the identifiability of the dynamic parameters of the flexible
joints because the controller is designed to damp out the vibrations of the robot.
Therefore, during the trajectory the driving torques are perturbed with feed-
forward torques τ(f f ) having a frequency spectrum beyond the bandwidth of
the closed-loop system; see figure 4.3. Details about the reference trajectory r
and the feed-forward torques τ(f f ) will be presented in next section.

4.2.2 Simulation example

The identification method will be demonstrated with simulated responses of
the four link manipulator model presented in figure 3.4, page 20. The param-
eters of the robot model are adopted from the industrial Stäubli RX90B robot.
The mass and inertia parameters, including the drive inertias, are obtained
from CAD data. The last two joints are replaced by a single rotational inertia
of 0.05 kg m2, which has been added to J′ [4](p)

zz of link 4. Numerical values for
the stiffness and prestress of the gravity compensating spring in link 2 are pro-
vided by the manufacturer. The joint friction model and parameters are based
on the work of Waiboer (2007), see section 3.3.2. For the stiffness parameters
the results of section 4.1, table 4.1 have been used. No a priori values for the
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damping parameters are known. Their numerical values are set to 0.1% of the
stiffness parameters to avoid the occurrence of undamped vibrational modes.
An overview of the used parameters can be found in table D.1 on page 139.

The nonlinear manipulator model is implemented in the simulation pack-
age SPACAR. For the simulations the nonlinear SPASIM routine has been
used, operating under MATLAB SIMULINK. The ODE23t numerical integration
scheme is selected, with an absolute and relative accuracy set to 1e-7. This inte-
gration scheme is suitable for moderate stiff problems and is free of numerical
damping. The dynamic responses are computed in the closed-loop configura-
tion of figure 4.3 with a model of the real digital Stäubli CS8 motion controller.

The reference trajectory r is described by the second harmonic (joints 1 and
3) and third harmonic (joints 2 and 4) of a sine function with a period of 4.096 s
and an amplitude and offset of 1

4 π. Therefore, the reference signals for the joint
positions vary between 0 and 1

2 π. The feed-forward torques are described by
a multi-sine signal containing 72 equally spaced frequencies ranging from 1 to
110 Hz. The real CS8 motion controller can log several signals at 250 Hz. In the
simulation model the data is sampled at 4 kHz. To mimic the real controller and
to prevent aliasing the data is resampled to 250 Hz using a digital lowpass filter.
It has been found that without this lowpass filter the estimation is inaccurate
because of aliasing effects.

The velocities and accelerations are obtained by means of numerical differ-
entiation of the position signals using an eighth order central difference scheme
given by Khan and Ohba (2003). In a simulation the true velocities and acceler-
ations are easily accessible, but with the real robot only position data is avail-
able. To mimic the experimental conditions as much as possible the numerical
differentiation procedure is included in this simulation example as well.

From the simulated responses, the regression matrix A and the measure-
ment vector y are constructed. The parameter vector p contains 78 parame-
ters, namely the stiffness and prestress of the gravity compensating spring, 10
inertia parameters p[k](l) for each link, and 1 drive inertia, 2 friction parame-
ters (τ(a,0)

j and c(v)
j ), 3 stiffness and 3 damping parameters for each joint. The

scaling matrix W(R) is used to divide each column by an initial estimation of
the corresponding parameter value. It is expected that all measurements have
equal uncertainty, therefore weighting matrix W(L) has not been used.

Using a singular value decomposition for the regression matrix, the essen-
tial parameter vector p̂(E) is identified. The solid line in figure 4.4 shows the
norm of the residuals in equation (4.3) for an increasing number of singular
values that are used to compute this parameter vector. The dashed line in fig-
ure 4.4 represents the norm of equation (4.3) for the true parameter vector p.
This line is also a measure of the noise level in the simulation example. The fig-
ure shows that for more than 59 singular values only a negligible extra reduc-
tion of the residual is possible. The solid line crosses the dashed line between
58 and 59 singular values. Consequently, the contribution of the parameter
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space spanned by columns 59-78 of the right singular matrix V to the mea-
sured response of the manipulator is smaller than the noise level. Furthermore,
the measurement noise will decrease the accuracy of the estimated parameter
values for an increased number of singular values. This effect is visualised in
figure 4.5, in which the maximum error between the estimated and true param-
eter vector in the essential parameter space is given for an increasing number
of singular values.

Based on the results presented in the last two figures the essential parame-
ter vector will be spanned by the first 59 columns of the right singular matrix V.
This number is marked in figure 4.5 by the dotted lines. The estimated param-
eters are given in table D.1 on page 139. To compare the identified parameters
with the original values, both are projected onto the essential parameter space.
The difference between both parameter sets arises from measurement noise
generated by quantisation effects in the controller, aliasing effects during sam-
pling and numerical differentiation of the position signals. The list of parame-
ters shows that the mass of the first link, denoted by m[1], cannot be identified.
The reason for this is that this parameter has no influence on the dynamic re-
sponse and may be omitted from the model. In addition, the static asperity
friction torques τ

(a,0)
j cannot be identified from the data set. These parame-

ters define the sliding friction torque for very low velocities around velocity
reversals. The identification trajectory does not contain enough data points in
this velocity region to identify these parameters. Although it cannot identified
from this data set it has a large influence on forward simulations and may not
be omitted in the model. Therefore these parameters should be identified from
dedicated friction identification experiments as described by Waiboer (2007).



�

�

“ThesisV2” — Toon Hardeman — 2008/1/6 — 17:11 — page 54 — #74
�

�

�

�

�

�

54 Chapter 4. Linear identification methods

Furthermore, the parameters J′ [3](p)
yz and J′ [4](p)

yz cannot be identified from this
data set. For the other parameters a satisfactory estimation is achieved.

As the ultimate goal of this work is to simulate the robot response, not
only are the estimated parameters important but also the ability to simulate
the robot tip motion. Simulated tip responses of both the original and the iden-
tified model are used for the validation of the identified parameters. The iden-
tified static asperity friction torques τ

(a,0)
j are replaced by the original values in

this simulation.
The robot is programmed to perform a tip motion along a straight line of

1.7 m in the horizontal plane as illustrated in figure 4.6(a) with starting point A
and end point B. The joint reference signals are presented in figure 4.6(b). Due
to the flexibilities and limited tracking performance of the control system, the
robot tip deviates from the programmed straight line. The tip deviations of the
model using the original parameters are shown in figures 4.7(a) and 4.7(b) in a
vertical and horizontal directions, respectively. The figures show that at start-
up for t = 0 due to high accelerations in combination with the static asperity
friction torque the robot is excited resulting in a small vibration of the robot
tip, which damps out during the first half second. Next, at t = 1 s, a high
acceleration of joint 1 and a change of the sign of the friction torque due to
joint velocity reversals of joint 2 and 3 result in a significant deviation of the
robot tip. The influence of gravity is clearly recognisable in figure 4.7(a) as well,
namely the tip motion first shows a decreasing static deflection from point A
towards the middle of the trajectory and subsequently an increasing deflection
towards point B.

Figures 4.7(c) and 4.7(d) show the differences in the vertical and horizontal
direction of the tip motion simulated with models using the original and the
identified parameters. These differences appear to be more than two orders of
magnitude smaller than the tip deviations of the original model. Similar re-
sults are found when other quantities are compared, e.g. the driving torques.
Furthermore, the absolute accuracy of the tip motion is an order of magnitude
smaller than the 0.1 mm bound, which is required for laser welding as pre-
viously mentioned in section 1.1. Therefore, it can be concluded that there is
a good agreement between both models and that the identification technique
works for this simulation example.

4.2.3 Experimental approach linear least squares method

To apply the linear identification method to the actual Stäubli RX90B robot,
all degrees of freedom should be measured. The drive angles can be com-
puted from measurements of the resolvers attached to the motor shafts. For the
elastic deformations, the Krypton camera system is proposed. Unfortunately
the dynamic identification involves much more than the static identification
of section 4.1. The robot appears to vibrate in a complicated 3D motion even
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Figure 4.6: Validation trajectory 4 DOF model.
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if it is excited in one plane. So, instead of measuring only one elastic defor-
mation of one joint, now all deformations of all joints need to be measured
synchronously. Therefore another method is required to compute the joint de-
formations from the camera measurements. First, the developed measurement
technique is presented. Then some experimental results including the accuracy
of the measurement technique are given. Finally, the use of this measurement
technique for the parameter identification of the Stäubli RX90B is discussed.

3D measurement technique for the Krypton camera system

To measure the elastic deformations of one joint, three markers are attached to
the links on either side of the joint, see figure 4.8. The position of these mark-
ers, denoted by (x[1](p), x[2](p), x[3](p)) and (x[1](q), x[2](q), x[3](q)), are expressed
in a frame (nx, ny, nz) fixed to the camera. The links are assumed to be rigid,
so the position of the three markers on link p can be described with a sin-
gle transformation T (p)(λ(p), v(p)) with respect to some reference positions of
the markers, denoted by (x[1](p,0), x[2](p,0), x[3](p,0)). The rotational part of this
transformation is described by four Euler parameters λ(p). The translation is
described with a vector v(p). In this way the position of marker i during motion
will be described by⎡⎢⎣x[i](p)

x

x[i](p)
y

x[i](p)
z

⎤⎥⎦ = R(λ(p))

⎡⎢⎣l[i](p,0)
x

l[i](p,0)
y

l[i](p,0)
z

⎤⎥⎦+

⎡⎢⎣v(p)
x

v(p)
y

v(p)
z

⎤⎥⎦ , (4.9)

in which R(λ(p)), also denoted as R(p), is a rotation matrix. An expression for
the rotation matrix in terms of Euler parameters is presented in equation (3.16).
In the initial configuration, matrix R(λ(p)) is the identity matrix and vector v(p)

contains zeros. For each link configuration measurements for all three markers
are available, which are mutually related through equation (4.9). This results
in a system with 9 equations and 7 unknowns, namely 4 λ-parameters and
3 coordinates of vector v(p). For each new measurement, the transformation
parameters (λ(p), v(q)) are estimated by solving this overdetermined nonlinear
system in a least squares sense. The λ-parameters are not independent, so the
solution is further constrained by equation (3.17). This procedure is carried out
for the links on either side of the joint.

Next, the elastic deformations of the joints are related to the relative motion
between the links on each side of the joint. The deformation functions of the
hinge element, equation A.13 on page 130, are used to describe the required de-
formation parameters in a local reference frame (nx̄, nȳ, nz̄) as a function of the
estimated λ-parameters. The local reference frame (nx̄, nȳ, nz̄) must be speci-
fied with respect to the global camera frame. This is done by first calibrating
the base frame of the robot with respect to the camera frame. Next, the local
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Figure 4.8: Measurement setup with Krypton camera system to measure the joint
deformations in 3 directions. The dots represent the markers.

frames are computed from the calibrated base frame and an a priori known
kinematical model of the robot. The base frame is calibrated by solving an
over-determined set of equations describing the position of measured mark-
ers as a function of the base frame and the kinematic model for several robot
poses, see Khalil and Dombre (2002). For this calibration a set of three mark-
ers is attached to the robot tip. The local reference frame is attached to link p.
Therefore it only needs to be specified for the initial configuration. It is impor-
tant that the local reference frames are defined accurately, because only then
do the measured deformations correspond to the deformations of the model.

Results 3D measurement technique

The experimental results of the proposed measurement technique applied to
the Stäubli RX90B are presented in this section. During movement of the joints
along a specified trajectory r, the robot is excited by feed-forward torques τ( f f ).
The measured drive angles ê(m) are presented in figure 4.9(a). All markers
should be visible for the camera system throughout the measurement. As a
result the trajectory is less exciting than the trajectory presented in section 4.2.2.

The total joint rotations θ̂ and joint deformations ε̂(2m) and ε̂(3m) are es-
timated from Krypton data using the procedure described above. The drive
deformations ε̂(1m) are computed by

ε̂(1m) = θ̂
(m) − ê(m). (4.10)
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The results for joint 2 are presented in figure 4.9(b).
As expected, the elastic deformations are much smaller than the drive angle

ê(m)
2 . This, in combination with relation (4.10), indicates that the proposed mea-

surement technique is able to estimate the large joint motion θ(m). However,
the accuracy of this estimation and in particular that of the elastic deformations
ε(m) appeared to be insufficient, for reasons explained below.

First of all, the accuracy of the camera system itself is insufficient for this
application. For the stiffness measurements, 2D data could be used. During
the dynamic excitation 3D measurements are required and, as specified in ap-
pendix C, the accuracy is less for the third dimension. In addition the gross
motion of the manipulator required to excite the pose-dependent dynamics
has a negative influence on the obtained accuracy, because the accuracy of a
measured marker displacement decreases if the total marker displacement in-
creases.

Second, it appeared that insufficient accuracy of the kinematic model and
the base calibration resulted in a small orientation mismatch of the local frames
(x̄, ȳ, z̄). Because of this, part of the large joint motions θ is projected onto the
small bending deformations (ε(2m), ε(3m)). For example, the measured defor-
mations ε̂

(2m)
2 and ε̂

(3m)
2 presented in figure 4.9(b), show a low frequency be-

haviour similar to the large rotations θ
(m)
1 and θ

(m)
2 , presented in figure 4.9(a).

As a result, even if the high frequency vibration is measured correctly, a mea-
surement error in the low frequency behaviour will result in an inaccurate least
squares fit, as the outcome of the least squares fit is very sensitive to the rather
large amplitude of the low frequency trend. Note that specifying a local frame
to express the joint deformations is always an issue when measuring the joint
deformations. This is not only the case for camera systems but also for other
external sensors, especially if the small joint deformations are computed from
large and absolute link movements.

4.3 Discussion

The static identification method of section 4.1 is straightforward to apply but
only gives the stiffness parameters. The linear least squares parameter iden-
tification technique of section 4.2.1 can be used provided that all degrees of
freedom can be measured with sufficient accuracy. Unfortunately it appeared
that the measurement setup with the Krypton camera system is to inaccurate
for these measurements. It is expected that no other measurement system is
available in or outside the laboratory that is applicable for this task. There-
fore, another method that does not require measuring all deformations will be
presented in the following chapters.
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Figure 4.9: Experimental results 3D Krypton measurements.
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Chapter 5

Inverse eigenvalue parameter
identification method

To estimate the dynamic parameters of the drive system of the robot model, an
identification method is proposed that has its roots in the inverse eigenvalue
theory. The method is based on the work of Hovland et al. (2001). In this
chapter, some important modifications are proposed.

A first modification is to use Multivariable Frequency Response Functions
(MFRF), while in the original method SISO frequency response functions are
proposed. As will become clear in chapter 6, the use of MIMO closed-loop
measurements cancels the requirement of the original method to switch off the
feedback controllers of the excited joints.

A second modification concerns the determination of the (anti-)resonance
frequencies that are needed as input for the inverse eigenvalue identification
method. Using the original method the extraction of the (anti-)resonance fre-
quencies from an identified MFRF was unspecified. In this work the parametri-
sation of the MFRF by means of transfer functions is proposed. A transfer
function is a mathematical representation of the relationship between the in-
put and output of a linear time invariant system. The inputs and outputs of
the robot are defined as the driving torques and drive angles, respectively. The
parametrisation of the MFRF by means of transfer functions enables accurate
estimation of the required undamped eigenvalues. The transfer functions are
identified by frequency domain system identification techniques that will be
presented in chapter 6. Although these techniques are quite involved, they
enable a thorough validation of the estimated (anti-)resonance frequencies.

Furthermore, the method is applied to a robot containing both drive and
joint flexibilities, while originally only drive flexibilities were included. Al-
though the joint flexibilities cannot be identified with this method, it is shown
that the presence of joint flexibilities does not influence the estimation of the
drive flexibilities.
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Outline

Before the inverse eigenvalue problem will be discussed by giving a brief
overview of the available literature, the forward eigenvalue problem will be
introduced. Next, it will be shown that an appropriate normalisation of the
eigenvectors can help to solve the inverse problem. In section 5.4 the rela-
tionship between an MFRF and the eigenvalue problem will be presented. In
section 5.5 a special type of eigenvectors, namely the rigid-body modes, will
be introduced to explain the low frequency amplitude of the MFRF. In sec-
tion 5.6 the parametrisation of the MFRF using transfer functions is presented.
Section 5.7 shows the derivation of the transfer functions from the nonlinear
robot model featured in chapter 3. After discussing this general eigenvalue
theory, the proposed method to identify the dynamic parameters of the drive
system will be presented in section 5.8. The method will be illustrated with a
numerical example using the robot model presented in section 4.2.2. Finally,
the approach presented in this chapter will be discussed.

5.1 Eigenvalue problem

The development of this section follows Gatti and Ferrari (1999). Let us con-
sider a set of linear second order differential equations in terms of the degrees
of freedom q ∈ RN(q)

excited by an external force vector f ∈ RN(q)
,

M̃q̈ + D̃q̇ + K̃q = f , (5.1)

in which matrices M̃, D̃ and K̃ represent the mass matrix, the damping matrix
and the stiffness matrix, respectively.

In the undamped eigenvalue problem we seek solutions for equation (5.1)
when no external forces are applied and damping is not present:

M̃q̈ + K̃q = 0. (5.2)

Let us seek a particular solution, namely that in which all the coordinates ex-
ecute synchronous harmonic motion. Mathematically, this type of motion is
expressed by

q = νe−jωt, (5.3)

in which ν are constant amplitudes and e−jωt is a harmonic function of time
that is the same for all the coordinates q. Substitution of a solution of this type
yields

(−ω2M̃ + K̃)νe−jωt = 0. (5.4)

Let us assume that matrices M̃ and K̃ are nonsingular, so that K̃ν and M̃ν do
not vanish except for the trivial solution ν = 0. Separating the time-dependent
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and space-dependent variables yields the generalised eigenvalue problem from
which follows that (5.4) allows a non-trivial solution ν[r] so that

(K̃ − ω[r]2M̃)ν[r] = 0, (5.5)

if ω[r]2 is a root of the algebraic equation

det(K̃ − ω2M̃) = 0. (5.6)

The eigenvalue equation (5.6) is of degree N(q) in ω2 and thus possesses N(q)

roots ω[r]2. It can be shown that for symmetric and positive K̃ and M̃, scalar

ω[r]2 is a real and positive quantity. To each root ω[r]2 corresponds a real solu-
tion ν[r], namely the solution of equation (5.5), which is called the eigenvector

associated with the eigenvalue ω[r]2.

5.2 Overview inverse eigenvalue techniques

The inverse eigenvalue problem is defined as follows: construct the mass, stiff-
ness and, if possible, damping matrix according to a modal data set containing
their eigenvalues and eigenvectors.

For the undamped eigenvalue problem (5.5) no unique solution is avail-
able because the eigenvectors are only unique up to a scalar multiplier. If it
is known, for example, that the given set of eigenvectors is normalised with
respect to the mass matrix or the mass matrix is known a priori, the mass and
stiffness matrices can be reconstructed from the modal data set.

Often only a limited number of coordinates can be measured (or excited)
independently. Therefore only a subset of the eigenvector coordinates is avail-
able. The inverse problem for a limited set of measurements has been studied
by several researchers. Unique solutions can only be found if the topology of
the system is restricted.

An often-made assumption is that the system consist of a series of lumped
masses with springs in between, see figure 5.1(a). A system such as this has
a diagonal mass matrix and a symmetric tri-diagonal (also called Jacobian)
stiffness matrix. Gantmakher and Krein (1950) first solved the basic prob-
lem of reconstructing the mass and stiffness parameters of this system from

its resonance frequencies ω[r]2 and anti-resonance frequencies μ[r]2. The anti-

resonance frequencies μ[r]2 are equal to the resonance frequencies of the con-
strained system. The constrained system is defined by fixing the last mass, see
figure 5.1(b). As shown by Gladwell (1986) the resonance and anti-resonance
frequencies can be used to compute the eigenvector coordinates ν

[r]
N(q) for

r = 1, · · · , N(q) and vice versa.
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k1
m1

q1

k2
m2

q2

k3 kN(q)

mN(q)

qN(q)

(a) System with eigenvalues ω[r]2

k1
m1

q1

k2
m2

q2

k3 kN(q)

(b) Constrained system with eigenvalues μ[r]2

Figure 5.1: System model, containing N(q) masses and springs. The
anti-resonance frequencies of the system are equal to the resonance
frequencies of its corresponding constrained system.

A vast amount of literature related to a series of lumped masses and its gen-
eralisation is available at the moment. An overview with regard to undamped
systems can be found in Gladwell (1986, 2004). A pre- and post-multiplication
of eigenvalue problem (5.5) with the square root of the mass matrix M̃1/2 (see
Gladwell (1986)) yields the standard eigenvalue problem:

(J − ω[r]2I)u[r] = 0, (5.7)

in which u[r] is the eigenvector corresponding to the eigenvalue ω[r]2 and

J =
(

M̃−1/2
)T

K̃M̃−1/2. (5.8)

The well-conditioned procedure for reconstructing Jacobian matrix J uniquely

from (ω[r]2, u[r]
N(q) ) for r = 1, · · · , N(q) is called the Lanczos algorithm; see

Golub and Boley (1977); Boley and Golub (1988).
A lot of effort has been made to extend the Lanczos algorithm for different

spring configurations, but still assuming a diagonal or a priory known mass
matrix. Gladwell (1997, 1999) shows how an infinite family of tri-diagonal stiff-
ness and mass matrices can be constructed, in such a way that each model has
a specified set of resonance and anti-resonance frequencies. The tri-diagonal
mass and stiffness matrices correspond to inline finite element models assem-
bled of 2 DOF elements.

More recently, inverse eigenvalue problems have been studied for damped
systems with complex eigenmodes and eigenvalues. Gladwell (1999) shows
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how to construct the inline finite element model with a damper at the free end,
so that the system has specified (complex) eigenvalues.

Ram and Elhay (1996) analyse the problem of designing a system with a
known diagonal mass matrix and a tri-diagonal stiffness and damping matrix,
so that the spectrum of the original system and the constrained system has a
specified set of complex eigenvalues. A system such as this corresponds to a
serial train of known masses interconnected by springs and dampers as shown
in figure 5.1. They show that a solution is always possible, but not unique.

Gladwell (2001) analyses the reconstruction of a damped parallel system, in
which each parallel system is connected by a common mass at the free end. The
reconstruction uses the eigenvalues of both the original and the constrained
system. The analysis has two parts: the establishment of the conditions on the
eigenvalues which ensure that they correspond to an actual system; and the
derivation of the system parameters from its (constrained) eigenvalues.

Lancaster and Prells (2005) study the inverse problem for a general damped
eigenvalue problem with positive definite mass and stiffness matrices and a
positive semi-definite damping matrix. Assuming that all matrices are sym-
metric and a full set of eigenvalues and eigenvectors are provided, a solution
is given to reconstruct the system matrices. Furthermore, conditions regarding
the modal data are given for which a solution can be obtained. The mass matrix
can only be computed uniquely if it is assumed that all matrices are symmetric.

A mathematical overview of general inverse eigenvalue techniques can be
found in the book by Chu and Golub (2005).

Only a brief overview of the available literature on this subject is given
above, but it shows that it is generally impossible to reconstruct the mass, stiff-
ness and damping matrix of a mechanical system uniquely from only a par-
tially described set of modal data. In our experimental setup the reduced data
set arises from a lack of sensors, because only the driving torque and drive
angle can be measured. In addition, the number of eigenvalues that can be
identified is limited, because of the maximum sample rate of the robot con-
troller.

As shown above, the number of sensors can be reduced if the topology of
the system is restricted. For a system such as this the mass, stiffness and damp-
ing matrices have a sparse structure. The stiffness and damping matrices of the
linearised robot model are diagonal. The mass matrix of the robot model has
no sparse structure, except for the entries corresponding to the coordinates of
the drive system. By using the joint rotations as degrees of freedom, as ex-
plained in section 3.3.3, a partly diagonal mass matrix and tri-diagonal struc-
tural stiffness and damping matrix are obtained. In section 5.8 this feature will
be used to identify some of the dynamic parameters of the drive system. Be-
fore presenting the proposed identification method, it will be shown that an
appropriate scaling of the eigenvectors can help solve the inverse eigenvalue
problem.



�

�

“ThesisV2” — Toon Hardeman — 2008/1/6 — 17:11 — page 66 — #86
�

�

�

�

�

�

66 Chapter 5. Inverse eigenvalue parameter identification method

5.3 Mass normalisation of the eigenvectors

The eigenmodes ν[r] are orthogonal with respect to the mass and stiffness ma-
trix M̃ and K̃. However, as pointed out before the amplitude of an eigen-
mode is undefined, thus allowing us to choose it appropriately. A common
choice is to apply a normalisation on the mass matrix (Gatti and Ferrari (1999);
Meirovitch (1986)), yielding

ν[s]TM̃ν[r] = δrs, (5.9)

and

ν[s]TK̃ν[r] = ω[r]2δrs, (5.10)

in which δrs is the Kronecker delta symbol.
The eigenvectors can be conveniently arranged in a square matrix of order

N(q), known as the modal matrix and having the form

N = [ν[1], · · · , ν[N(q)]]. (5.11)

In view of definition (5.11), all N(q) solutions of the eigenvalue problem, equa-
tion (5.5), can be written in a compact matrix equation

K̃N = M̃NΩ2, (5.12)

in which Ω2 is a diagonal matrix containing the corresponding eigenvalues ω2.
If the modes are normalised to satisfy equation (5.9), we can write

NTM̃N = I (5.13)

and

NTK̃N = Ω2. (5.14)

Where this mass normalisation is well known from literature, below ex-
plicit relations will be derived for the mass and stiffness matrices of the inverse
eigenvalue problem using this normalisation of the eigenvectors. Taking the
inverse of equation (5.13) yields

(NTM̃N)−1 = N−1M̃−1N−T = I. (5.15)

A pre- and post-multiplication by N and NT , respectively, gives

M̃−1 = NNT , (5.16)

so

M̃ = (NNT)−1. (5.17)
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A pre- and post-multiplication of equation (5.14) by N and NT , respectively,
gives

NNTK̃NNT = NΩ2NT . (5.18)

Substitution of relation (5.16) into this equation and pre- and post-
multiplication by matrix M̃ yields

K̃ = M̃NΩ2NTM̃. (5.19)

Equations (5.17) and (5.19) give the explicit relations for the mass matrix M̃ and
the stiffness matrix K̃ as a function of a given set of eigenvalues and eigenvec-
tors, provided that the eigenvectors are normalised with respect to the mass
matrix. Next, these equations will be used to derive a relationship between
eigenvalues and the MFRF of a system.

5.4 Multivariable frequency response function of
undamped system

Suppose that system (5.2) is excited by means of a set of sinusoidal forces with
the same frequency ω but with various amplitudes and phases as specified by
the vector f (0) ∈ CN(q)

. We have

M̃q̈ + K̃q = f (0)e−jωt (5.20)

and assume that a solution exist in the form

q = ze−jωt, (5.21)

in which f (0) and z are vectors of time-independent complex amplitudes. Sub-
stitution of equation (5.21) into equation (5.20) yields the algebraic system gov-
erning the amplitude of the response

(K̃ − ω2M̃)z = f (0). (5.22)

The formal solution is

z = (K̃ − ω2M̃)−1 f (0) ≡ H(jω) f (0), (5.23)

in which H(jω) is the Multivariable Frequency Response Function (MFRF). Ele-
ment Hj,k(jω) of this matrix is the displacement response of the jth degree of
freedom when the excitation is applied at the kth degree of freedom only.

Calculation of the response by means of equation (5.23) is highly inefficient
because we need to invert a matrix for each frequency value. However, using
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the result of section 5.3, after pre- and post-multiplication of matrix H−1 =
(K̃ − ω2M̃) by NT and N, we obtain

NTH−1N = Ω2 − ω2I. (5.24)

Furthermore (NTH−1N)−1 = N−1HN−T which, after pre- and post-
multiplication of both sides by N and NT , respectively, leads to

H(jω) = N(Ω2 − ω2I)−1NT . (5.25)

So the (j, k)th element of the MFRF matrix H can be explicitly written as

Hj,k(jω) =
N(q)

∑
r=1

ν
[r]
j ν

[r]
k

(ω[r]2 − ω2)
. (5.26)

Carrying out the summation in equation (5.26) and bringing all contribu-
tions under the same denominator yields (Gladwell (1999))

Hj,k(jω) = αj,k
∏N(q)−1

r=1 (μ[r]2
j,k − ω2)

∏N(q)
r=1 (ω[r]2 − ω2)

, (5.27)

in which μ[r]
j,k are the anti-resonance frequencies of the MFRF H(jω) and αj,k

is an unknown scalar. Multiplying equation (5.26) and (5.27) by ω2 and let ω
go to infinity, yields

lim
ω→∞

ω2Hj,k(jω) =
N(q)

∑
r=1

ν
[r]
j ν

[r]
k = αj,k. (5.28)

By using the result of equation (5.16), namely NNT = M̃−1, we have

∑N(q)

r=1 ν
[r]
j ν

[r]
k = (M̃−1)j,k = αj,k and

Hj,k(jω) = (M̃−1)j,k
∏N(q)−1

r=1 (μ[r]2
j,k − ω2)

∏N(q)
r=1 (ω[r]2 − ω2)

, (5.29)

in which (M̃−1)j,k means the (j, k)th element of the inverted mass matrix. As a
result, the high frequency amplitude of Hj,k(jω), see equation (5.28), is defined
by

H(high)
j,k (jω) =

1
ω2 (M̃−1)j,k, (5.30)

for ω 	 ω[N(q)]. Equation (5.30) shows that for high frequencies the MFRF
H(jω) is only a function of the mass matrix M̃ and frequency ω.
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The right hand side of equation (5.26) should be equal to the right hand side

of equation (5.29). Multiplying both equations by (ω[m]2 − ω2) and putting
ω = ω[m] one finds

ν
[m]
j ν

[m]
k = (M̃−1)j,k

∏N(q)−1
r=1 (μ[r]2

j,k − ω[m]2)

∏N(q)

r=1;r 
=m(ω[r]2 − ω[m]2)
. (5.31)

This relation shows that the (anti-)resonance frequencies and the eigenvectors
corresponding to specific coordinates contain the same information.

In section 5.8 equations (5.28) and (5.31) will be used to estimate the drive
parameters for the robot model. In the next section a special kind of eigenvec-
tors will be presented, namely the rigid-body modes. The rigid-body modes
describe the behaviour of MFRF H(jω) for low frequencies and will be used to
identify the rigid mass matrix.

5.5 Rigid-body modes

According to Gatti and Ferrari (1999), the eigenvectors corresponding to the
rigid-body modes satisfy the fundamental relation

K̃ν = 0. (5.32)

A comparison of this equation with equation (5.5) shows that the rigid-body
modes can be interpreted as eigenmodes of zero eigenfrequencies. The rigid-
body modes are M̃- and K̃- orthogonal to the other (elastic) eigenmodes and
the rigid-body modes are mutually M̃-orthogonal.

Next, the low frequency behaviour of the MFRF H(jω) will be analysed
for a system containing N(r) rigid-body modes. The corresponding MFRF
H(low)

j,k (jω) is defined by letting ω go to zero in equation (5.26), yielding

H(low)
j,k (jω) =

⎧⎨⎩ 1
ω2 ∑N(r)

r=1 ν
[r]
j ν

[r]
k if ∑N(r)

r=1 ν
[r]
j ν

[r]
k 
= 0

0 if ∑N(r)

r=1 ν
[r]
j ν

[r]
k = 0

, (5.33)

in which it is assumed that the first N(r) eigenvalues and vectors correspond
to the rigid-body modes, so ω[r] = 0 for r = 1, · · · , N(r). Equation (5.33) shows
that the low frequency behaviour of H(jω) is fully defined by the rigid-body
modes and the frequency ω.

5.6 Transfer function of damped system

In reality, a system will always contain a certain amount of damping. For
damped systems, the eigenvalue decomposition is not as straightforward as in
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the undamped case, see Gatti and Ferrari (1999). Therefore, a so-called trans-
fer function matrix will be introduced, from which the MFRF of the damped
system can be easily extracted.

Let us consider again the linearised equation of motion presented in equa-
tion (5.1). Taking the Laplace transform of this equation, assuming that the
initial conditions are zero (q = 0 and q̇ = 0), yields

G(s)q(s) = f (s), (5.34)

in which G(s) = (M̃s2 + D̃s + K̃). A matrix inversion yields

q(s) = H(s) f (s), (5.35)

with H(s) the transfer function matrix, which can be expressed as

H(s) = (G(s))−1 =
G(adj)(s)
|G(s)| . (5.36)

The numerator G(adj)(s) is the (N(q) × N(q)) adjoint matrix of G(s) containing
polynomials in s of order 2(N(q) − 1). The denominator is a polynomial in s of
order 2N(q). Therefore, equation (5.36) can also be written as

H(s) =
B(s)
A(s)

=

⎡⎢⎣ B1,1(s) · · · B1,N(q)

...
. . .

...
BN(q),1(s) · · · BN(q),N(q)

⎤⎥⎦
A(s)

, (5.37)

which is called the common denominator transfer function model. Within this
parametrisation the elements of matrix H(s) are described by

H(s)j,k =
Bj,k(s)
A(s)

=
∑

2(N(q)−1)
r=0 bj,k,rsr

∑2N(q)
r=0 arsr

, (5.38)

in which bj,k,r and ar are the coefficients of the numerator and denominator
polynomials.

An alternative parametrisation of equation (5.36) is

H(s)j,k = K(H)
j,k

∏
2(N(q)−1)
r=1 (s + zj,k,r)

∏2N(q)
r=1 (s + pr)

. (5.39)

The coefficients pr and zj,k,r are the complex poles and zeros of multivariable

transfer function H(s), respectively. K(H)
j,k is a scalar, which will be defined later

on.
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A second alternative parametrisation of equation (5.36), with the advantage
that all the coefficients are real valued, is

H(s)j,k = K(H)
j,k

∏
(N(q)−1)
r=1 (s2 + 2ζ

[r](μ)
j,k μ

[r]
j,ks + μ

[r]2
j,k )

∏N(q)
r=1 (s2 + 2ζ [r](ω)ω[r]s + ω[r]2)

, (5.40)

provided that the poles and zeros show up in complex conjugated pairs. A
comparison of the last two parameterisations yields

|p2r| = |p2r+1| = ω[r] and |zj,k,2r| = |zj,k,2r+1| = μ
[r]
j,k. (5.41)

The MFRF H(jω) of a transfer function H(s) is found by substitution of
s = jω into H(s). Note the similarity of equation (5.40), for ζ

[r](μ)
j,k = ζ [r](ω) = 0,

with MFRF of the undamped system presented in equation (5.29). A compari-
son of both equations for s = jω goes to infinity yields

K(H) = M̃−1. (5.42)

Thus far the theory is described for the general mechanical system as described
by equation (5.1). In the next section, this theory will be applied to the robot
model from chapter 3.

5.7 Transfer function matrix of robot system

Let us consider the linearised equations of motion of the robot manipulator,
equation (3.90), in terms of the degrees of freedom

q =
[

e(m)

ε(m)

]
. (5.43)

Then we can write for equation (5.1)[
M̃ee M̃eε

M̃εe M̃εε

]
q̈ +
[

D̃ee D̃eε

D̃εe D̃εε

]
q̇ +
[

K̃ee K̃eε

K̃εe K̃εε

]
q = B(u)τ(a), (5.44)

in which

M̃ = M̄0,

D̃ = D0 + C0 + F0, (5.45)

K̃ = K0 + G0 + N0

and B(u) is defined as in equation (3.72). To facilitate notation the perturbation
symbol δ of equation (3.90) has been omitted in equation (5.44).
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Let e(m)(s) and τ(a)(s) represent the Laplace transforms of the drive angle
e(m)(tn) and the driving torques τ(a)(tn). The relationship between e(m)(s) and
τ(a)(s) is given by

e(m)(s) = P(s)τ(a)(s), (5.46)

in which

P(s) = B(u)T
H(s)B(u) (5.47)

and H(s) is defined as in equation (5.36).
The computation of H(s) from P(s) is impossible, because matrix B(u) is not

a square matrix. As a result, the mass, damping and stiffness matrices of the
robot model cannot be reconstructed from only measuring the drive angle and
the driving torque. However, the next section presents a method to reconstruct
parts of the mass and stiffness matrices using the presented inverse eigenvalue
theory.

5.8 Parameter identification method for the robot
model

An overview of the proposed identification method with regard to identifying
the drive inertia J[k](a), the drive stiffness k[k+1]

1 of joint j for k = 2j − 1 and the
rigid mass matrix M̃ee is summarised below.

1. Estimate transfer function P(s) from experimental data.

2. Compute the undamped MFRF P(jω), including the resonance ω[r] and
the anti-resonance frequencies μ

[r]
j,k from P(s).

3. Compute the drive inertias J[k](a) from the high frequency amplitude of
MFRF P(jω).

4. Compute the rigid mass matrix M̃ee from the low frequency amplitude of
MFRF P(jω).

5. Compute the coordinates corresponding to the drive angles e(m) of all
eigenvectors ν[r] from the undamped resonance and anti-resonance fre-
quencies and drive inertias J[k](a).

6. Compute the drive stiffness k[k+1]
1 from the estimated eigenvectors ν[r]

and drive inertias J[k](a).

A more detailed description of these steps is given below.
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Step 1

In the first step, identification experiments should be performed to identify the
transfer function matrix P(s), describing the drive angles e(m)(s) as a function
of the driving torques τ(a)(s). A detailed description of this identification pro-
cess is presented in chapter 6.

Step 2

The next step involves the computation of the MFRF P(jω) for the correspond-
ing undamped system from the transfer function P(s). It is assumed that all
poles and zeros are complex conjugated pairs, except for the rigid-body modes.
According to equation (5.41), the absolute values of the complex poles and ze-
ros are equal to the resonance and anti-resonance frequencies ω[r] and μ[r], re-
spectively, of the undamped system. Due to the relatively large joint friction
and a small stiffness arising from the gravity compensating spring and the geo-
metric and dynamic stiffness contributions, a rigid-body mode appears as two
first order poles and zeros. To compute the MFRF for the undamped system,
the first order poles and zeros are replaced by poles and zeros in the origin of
the complex plane, which implies for the identified model

K̃ee = D̃ee = 0,

K̃eε = D̃eε = 0, (5.48)

K̃εe = D̃εe = 0.

Note that the number of rigid-body modes N(r) is then equal to the number of
drive angles N(em).

Step 3

Next, the high frequency amplitude of the MFRF is used to compute the drive
inertias J[k](a). Equation (5.30) describes a relationship between the high fre-
quency amplitude of P(jω) and the inverse mass matrix M̃−1. As a result
of relationship (3.77), the rows and columns of the inverted mass matrix cor-
responding to the drive angles e(m) have only entries on the main diagonal,
namely 1

J[k](a) . This can be easily seen from the mass matrix presented in equa-

tion (3.79). So the drive inertias 1
J[k](a) can be estimated using

P(high)
j,j (jω) =

1
ω2 J[k](a)

. (5.49)

for j = 1, · · · , N(em) and k = 2j − 1.
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Step 4

Next, the low frequency amplitude of the identified MFRF is used to identify
M̃ee. The rigid-body modes correspond to a motion in which all elastic degrees
of freedom ε(m) are equal to zero, so ν

[r]
j = 0 for j > N(r) and r ≤ N(r). For the

rigidified system (ε(m) = 0) we can write

M̃ee ë(m) = τ(a). (5.50)

Therefore, the MFRF of this rigidified system is given by

H(rigid)
j,k (jω) =

1
ω2 (M̃−1

ee )j,k. (5.51)

A comparison of equation (5.33) with equation (5.51) yields

N(r)

∑
r=1

ν[r]ν[r]T =
[

M̃−1
ee 0
0 0

]
, (5.52)

from which we conclude that the low frequency amplitude of an identified
MFRF gives an estimate of M̃ee. Furthermore, equation (5.52) shows a more
fundamental relationship between the rigid-body modes and the rigid mass
matrix.

Note that an alternative method to identify M̃ee is the linear least squares
robot identification technique described in section 2.2.1. By means of this tech-
nique, the rigid behaviour and the corresponding physical parameters can be
identified very accurately. From this set of parameters, the rigid mass matrix
M̃ee can easily be computed.

Step 5

The next step involves the computation of the coordinates of the eigenvectors,
which correspond to the measured drive angles e(m). Equation (5.31) shows
that these coordinates can be computed from the resonance and anti-resonance
frequencies that were estimated in step two, and the corresponding entries of
the inverted mass matrix. In step three it is shown that these entries equal the
by equation (5.49) estimated inverted motor inertias.

Step 6

Finally, we exploit the diagonal structure of the first N(em) rows and columns
of M̃, to estimate the drive stiffness k(k+1)

1 . Writing the matrix multiplication of
equation (5.19) for such a special mass matrix, yields

K̃j,j = J[k](a)
N(q)

∑
r=1

ν
[r]
j ω[r]2ν

[r]
j J[k](a), (5.53)
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in which k = 2j − 1. It appears that the gravitational part of G0 and N0 is can-
celled by the stiffness of the gravity compensating spring DF (ec)Tk(c)DF (ec).
If the nominal velocities and accelerations remain small, we have K 	 G0 +
N0 + DF (ec)Tk(c)DF (ec), see equation (3.91). As a result we find that the drive
stiffness K̃j,j ≈ k(k+1)

1 .
Thus, solely from drive angles and driving torque measurements we are

able to estimate the drive inertias J[k](a), the rigid mass matrix M̃ee and the
drive stiffness k[k+1]

1 . Note that the theory presented in this chapter is based on
the dynamic equations of motion of a robot manipulator, including joint flex-
ibilities. Therefore, although only the drive flexibilities can be identified, this
method is also applicable for robots including joint flexibilities. To illustrate
the method a numerical example will be presented in the next section.

5.9 Numerical example

The robot model presented in section 4.2.2 is used for this simulation exam-
ple. In this example, only the first 3 joints are considered. The mass, inertia
and friction parameters are estimated from dedicated rigid robot identification
experiments, see Waiboer (2007). For the stiffness parameters the estimates of
table 4.1, page 48, are used. In comparison with section 4.2.2 the damping is in-
creased, such that the relative damping of the poles is around 25%. The model
is linearised while moving with a small velocity around a stretched horizontal
configuration, see figure 5.2. The linearised mass, damping and stiffness matri-
ces are used to compute the MFRF H(jω). The poles and zeros corresponding
to the drive angles of the first three joints are presented in table 5.1. Next,
the resonance and anti-resonance frequencies corresponding to the undamped
system are computed from these poles and zeros. These are also presented in
table 5.1.

In principle, a full set of resonance and anti-resonance frequencies and the
frequency responses for low or high frequencies should be identified to recon-
struct the drive system parameters. However, in practice only frequencies up
to a certain frequency can be identified, because of the limited sample rate of

Figure 5.2: Nominal robot configuration during excitation
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r p(2r−1) ω[r] z1,1,(2r−1) μ
[r]
1,1 z2,2,(2r−1) μ

[r]
2,2 z3,3,(2r−1) μ

[r]
3,3

1 -2.1 - 0.0j 0.0 -2.1 - 0.0j 0.0 -1.3 - 0.0j 0.0 -0.7 - 0.0j 0.0
-0.7 - 0.0j 0.0 -0.3 - 0.0j 0.0 -0.7 - 0.0j 0.0 -0.4 - 0.0j 0.0

2 -0.3 - 0.0j 0.0 -0.2 - 0.0j 0.0 -0.0 - 0.0j 0.0 -0.2 - 0.0j 0.0
-0.2 - 0.0j 0.0 -0.0 - 0.0j 0.0 -0.0 - 0.0j 0.0 -0.0 - 0.0j 0.0

3 -0.0 - 0.0j 0.0 -0.2+ 14.8j 14.8 -0.5+ 20.3j 20.3 -1.5+ 31.3j 31.3
-0.0 - 0.0j 0.0 -0.2 - 14.8j 14.8 -0.5 - 20.3j 20.3 -1.5 - 31.3j 31.3

4 -1.5+ 31.3j 31.3 -1.0+ 38.7j 38.7 -1.9+ 32.2j 32.3 -1.8+ 40.4j 40.4
-1.5 - 31.3j 31.3 -1.0 - 38.7j 38.7 -1.9 - 32.2j 32.3 -1.8 - 40.4j 40.4

5 -1.6+ 40.9j 41.0 -0.6+ 51.7j 51.7 -0.6+ 49.9j 49.9 -3.2+ 49.4j 49.5
-1.6 - 40.9j 41.0 -0.6 - 51.7j 51.7 -0.6 - 49.9j 49.9 -3.2 - 49.4j 49.5

6 -0.8+ 52.2j 52.2 -6.8+ 70.2j 70.5 -2.5+ 59.1j 59.2 -0.8+ 52.2j 52.2
-0.8 - 52.2j 52.2 -6.8 - 70.2j 70.5 -2.5 - 59.1j 59.2 -0.8 - 52.2j 52.2

7 -7.1+ 71.0j 71.3 -7.2+ 81.5j 81.8 -8.6+ 78.0j 78.4 -5.8+ 79.6j 79.8
-7.1 - 71.0j 71.3 -7.2 - 81.5j 81.8 -8.6 - 78.0j 78.4 -5.8 - 79.6j 79.8

8 -7.2+ 82.3j 82.6 -4.9+ 99.0j 99.1 -3.0+ 95.2j 95.3 -4.8+ 99.0j 99.1
-7.2 - 82.3j 82.6 -4.9 - 99.0j 99.1 -3.0 - 95.2j 95.3 -4.8 - 99.0j 99.1

9 -4.9+ 99.0j 99.1 -12.4+144.0j 144.5 -11.9+143.1j 143.6 -12.3+144.0j 144.6
-4.9 - 99.0j 99.1 -12.4 -144.0j 144.5 -11.9 -143.1j 143.6 -12.3 -144.0j 144.6

10 -12.4+144.1j 144.7 -47.5+243.4j 247.9 -48.8+244.3j 249.1 -49.1+245.0j 249.8
-12.4 -144.1j 144.7 -47.5 -243.4j 247.9 -48.8 -244.3j 249.1 -49.1 -245.0j 249.8

11 -49.1+245.0j 249.8 -108.9+365.7j 381.5 -108.8+365.6j 381.5 -108.9+365.7j 381.5
-49.1 -245.0j 249.8 -108.9 -365.7j 381.5 -108.8 -365.6j 381.5 -108.9 -365.7j 381.5

12 -108.9+365.7j 381.5
-108.9 -365.7j 381.5

Table 5.1: The poles and zeros and corresponding resonance and anti-resonance fre-
quencies of the simulation model in Hz.

the controller. This influences the estimation of both the drive inertia J[k](a)

and the drive stiffness k([k+1])
1 . Table 5.2 shows the estimated drive parame-

ters for a reduced set of (anti)-resonance frequencies. The reduction is done by
neglecting the highest frequencies. This influences the frequency response for
high frequencies and therefore the estimation of the drive inertia J[k](a) as well.
The frequency response of the reduced model for low frequencies is kept con-
stant. Table 5.2 shows that, for a reduced set of eigenvalues, the drive stiffness
and drive inertia are underestimated. Therefore, the success of this estimation
method depends on the number of eigenvalues that can be extracted from ex-
perimental data. This number should be in accordance with the number of
degrees of freedom of the assumed model structure. The performance under
experimental conditions will be addressed in the next chapter.

5.10 Discussion

In this work the normalisation of the eigenvectors with respect to the mass ma-
trix is fully exploited. For such a set of eigenvectors, equation (5.16) presents
a relationship for the mass matrix as a function of the eigenvectors. This rela-
tionship enables a physical interpretation of an up to now implicitly defined
scaling factor αj,k in the MFRF for a mechanical system, see equation (5.28).
If the eigenvectors are normalised with respect to the mass matrix, this scal-
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Drive inertia (kg m2) Drive stiffness ×105 (N m rad−1)
N J[1](a) J[3](a) J[5](a) k[2]

1 k[4]
1 k[6]

1
true 3.10 1.31 0.79 2.80 2.70 1.00

10 3.10 1.31 0.79 2.80 2.70 1.00
9 3.10 1.31 0.79 2.80 2.68 1.00
8 3.05 1.31 0.79 1.53 2.47 1.00
7 3.04 1.29 0.79 1.46 2.23 0.98
6 3.04 1.18 0.79 1.46 1.53 0.97
5 2.99 1.07 0.73 1.27 1.03 0.71
4 2.92 0.74 0.39 1.08 0.23 0.02
3 2.86 0.67 0.35 0.98 0.16 0.00
2 2.55 0.42 0.34 0.63 0.03 0.00
1 0.57 0.18 0.34 0.00 0.00 0.00

Table 5.2: True and estimated drive parameters for a varying number of N
(anti-)resonance frequencies. The system has 12 degrees of freedom, including 3 rigid-
body modes. Two of them are redundant, so the maximum for N = 10.

ing factor αj,k is proven to be the (j, k)th element of the inverted mass matrix.
Based on this result, it is shown in equation (5.30) that the frequency response
for high frequencies is solely a function of the mass matrix and the frequency.
Furthermore, a relationship is derived between the rigid mass matrix and the
rigid-body modes, see equation (5.52).

It is impossible to identify the full mass and stiffness matrix on the basis
of driving torque and drive angle measurements only, but it is shown that the
rigid mass matrix M̃ee, the drive stiffness k[k+1]

1 and drive inertia J[k](a) can be
identified uniquely. The sparse structure in the mass and stiffness matrix for
entries that correspond to the drive system enables the identification of these
parameters, without the need for additional sensors. This sparse structure is
similar to the series of lumped masses model, presented in figure 5.1. There-
fore, the Lanczos algorithm (see section 5.2) is proposed to identify the drive
parameters for robots containing more than one drive flexibility per joint.

The success of the identification method depends on the number of
(anti-)resonance frequencies that can be identified from experimental data. The
identification of transfer functions, from which the resonance frequencies can
be extracted, will be the topic of the next chapter. Conclusions about the actual
number of (anti-)resonance frequencies that can be identified from experimen-
tal data will be postponed to the end of the next chapter.
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Chapter 6

Identification of transfer
functions

This chapter presents the identification of transfer functions from experimen-
tal data using frequency domain system identification techniques. The transfer
functions describe the resonance and anti-resonance frequencies for the robot
joints, which are used to identify the dynamic parameters of the drives as pre-
sented in the previous chapter.

An overview of available system identification methods can be found in
textbooks e.g. Pintelon and Schoukens (2001); Ljung (1999). In this work, the
frequency domain approach presented by Pintelon and Schoukens (2001) will
be used. The frequency domain approach is more suitable for the identification
of continuous transfer function models as presented in equation (5.46) than the
time domain methods. Time domain methods are more common for the esti-
mation of discrete models. An additional step is then required to convert the
discrete poles and zeros to their continuous counterparts. Furthermore, for
safety and stability reasons the robot model should be estimated from closed-
loop experiments, leading to correlated input and output noise. The so-called
frequency domain errors in variables model (EV), presented by Pintelon and
Schoukens (2001), includes these type of noise sources and is therefore a very
natural way to describe the identification of an open-loop model from noisy
closed-loop measurement data. Finally, as shown by Schoukens et al. (2005),
the frequency domain framework is also very suitable for describing the effects
of nonlinear plant and controller dynamics on the estimated linear model. For
these reasons the use of the frequency domain identification approach was de-
cided.

The frequency domain system identification method is available as a MAT-
LAB toolbox, namely the Frequency Domain System Identification Toolbox
(FDIDENT ), see Kollár (2001). Unfortunately, FDIDENT is restricted to SISO
models. A pre-release for MIMO identification is provided by the authors.
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80 Chapter 6. Identification of transfer functions

However, this release does not contain all the functionality required for this
work, such as the possibility to start the nonlinear optimisation with a user de-
fined initial model, the use of the pole/zero parametrisation of transfer func-
tions as presented in equation (5.39) and the estimation of symmetric transfer
functions. Therefore, a new MIMO toolbox has been implemented which fea-
tures this functionality, including model validation routines.

Furthermore, an extension of the errors in variables identification frame
work will be given. Schoukens et al. (2005) describe the effects of nonlinear dis-
tortions for an output error identification framework only, thus without corre-
lated input and output noise. The closed-loop robot system contains both non-
linear distortions and correlated input and output noise. Therefore, the nonlin-
ear distortions are included in the errors in variables identification framework.
Based on this formulation a new data averaging technique is proposed.

To outline the scope of this chapter, a short overview of the general system
identification approach is presented below. System identification procedures
consist of five basic steps.

1. Model structure selection

2. Experiment design

3. Collecting experimental data

4. Model estimation

5. Model validation

The first step is the selection of the desired model structure. The user must
decide which dynamic behaviour the model should predict and to what extent.
The selected model structure should correspond to this dynamic behaviour.
As mentioned in the previous chapter, the linearised robot dynamics will be
described by a transfer function matrix, see equation (5.46). The second step is
the experiment design. A well-designed experiment is the best guarantee for
building good models. It will be shown that the MIMO model structure and the
closed-loop configuration restrict the allowable excitation signals. Therefore, a
carefully designed experiment is required to obtain sufficiently high signal to
noise ratios for the measurement signals. In the third step, experimental data
is collected. The robot will be excited under the designed conditions and the
robot response is measured. In step four, the parameters of the selected model
structure are estimated. The model should be matched as closely as possible
with the measured response of the system. This is mostly done by minimising
a criterion that measures the accuracy of the fit. Finally, in step five the validity
of the selected model should be tested: does the model describe the available
data properly or are there still indicators that part of the robot dynamics is not
well modelled?
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Outline

In section 6.1 the errors in variables stochastic framework will be presented,
which will be used to validate and quantify the estimated linear models. In
section 6.2 the framework will be extended with a description of nonlinear
distortions, arising from the nonlinear dynamics of the robot manipulator. In
section 6.3 the estimation of the noise properties and the nonparametric multi-
variable frequency response function (MFRF) will be described. In section 6.4
the estimation and validation of a parametric MFRF will be presented. In sec-
tion 6.5 the proposed experimental design will be discussed. In sections 6.6 and
6.7 , respectively, the results of simulation studies and experimental studies on
the Stäubli RX90B will be presented. Finally, in section 6.8 some concluding
remarks on the material presented in this chapter will be given.

6.1 Stochastic identification framework for linear
systems

In the previous chapter, the linearised dynamic robot model was described by
a transfer function matrix P(0)(s) with N(u) inputs and N(y) outputs, see equa-
tion (5.46). Throughout this chapter the superscript 0 between round brackets
is added to denote the true linearised model. The goal of this chapter is to
estimate this function from experimental data. In this section, the stochastic
identification framework as presented by Pintelon and Schoukens (2001) for
SISO systems and Verboven et al. (2006) for MIMO systems will be applied to
the Stäubli RX90B closed-loop robot system.

Figure 6.1 presents a schematic linearised model of the manipulator, op-
erating in closed-loop with a linear feedback controller C(s). The signals
r[m](tn) ∈ RN(u)

and τ[m]( f f )(tn) ∈ RN(u)
represent deterministic periodic ref-

erence signals describing the joint position and the torque feed-forward, re-
spectively. The superscript m between square brackets is introduced to de-
note the mth measurement period, for m = 1, · · · , N(m). Each period con-
tains N(t) measurements, observed at time steps t = tn, in which tn = nT(s),
n = 0, 1, · · · , N(t) − 1 and T(s) the sample time. The noise sources v[m](c)(tn)
and v[m](p)(tn) represent the controller noise and process noise, respectively.
The measurement noise is denoted by m[m](u)(tn) and m[m](y)(tn). Any de-
viation from the periodic behaviour is considered noise. The following time
signals are observed during N(m) measured periods

u[m](tn) = u(0)(tn) + u[m](v)(tn),

y[m](tn) = y(0)(tn) + y[m](v)(tn). (6.1)

The vectors u[m](tn) ∈ RN(u)
and y[m](tn) ∈ RN(y)

stand for, respectively, the
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τ[m]( f f )(tn)

r[m](tn)

v[m](p)(tn)

v[m](c)(tn)

m[m](u)(tn) m[m](y)(tn)

u[m](tn) y[m](tn)

Robot

P(0)(s)

Controller
C(s)

Figure 6.1: Closed-loop model of the linearised robot manipulator with r[m](tn) and
τ[m]( f f )(tn) the reference signals, m[m](u)(tn), m[m](y)(tn) the measurement noise
sources, v[m](p)(tn) the process noise, v[m](c)(tn) the controller noise and u[m](tn),
y[m](tn) the measured input and output signals.

measured motor torques τ(a) and the measured motor rotations e(m). Vectors
u(0)(tn) and y(0)(tn) are the corresponding true but unknown values, i.e. the
input and output values in the absence of any noise disturbances. The noise
sources u[m](v)(tn) and y[m](v)(tn) on the measurement signals consist of the
disturbing noise sources v[m](c)(tn), v[m](p)(tn), m[m](u)(tn) and m[m](y)(tn).

Using the Discrete-time Fourier transform (DFT), the time-domain vector
sequences u[m](tn) and y[m](tn), n = 0, 1, · · · , N(t) − 1 are transformed into the
frequency domain

U [m](ω f ) =
N(t)−1

∑
n=0

u[m](tn)e−jω f T(s)n,

Y [m](ω f ) =
N(t)−1

∑
n=0

y[m](tn)e−jω f T(s)n, (6.2)

with ω f = f 2π
N(t)T(s) , f = 0, 1, · · · , N(t) − 1 and j the imaginary unit.

According to Pintelon and Schoukens (2001); Verboven et al. (2006) the
relationships within the frequency domain between the noisy input vector
U [m](ω f ) ∈ CN(u)

and noisy output vector Y [m](ω f ) ∈ CN(y)
, and the true ones

U(0)(ω f ) ∈ CN(u)
and Y (0)(ω f ) ∈ CN(y)

are described by the frequency domain
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P(0)(ω f )

U[m]
1 (ω f )

U(0)
1 (ω f )

U[m](v)
1 (ω f )

U[m]
2 (ω f )

U(0)
2 (ω f )

U[m](v)
2 (ω f )

U[m]
N(u) (ω f )

U(0)
N(u) (ω f )

U[m](v)
N(u) (ω f )

Y[m]
1 (ω f )

Y(0)
1 (ω f )

Y[m](v)
1 (ω f )

Y[m]
2 (ω f )

Y(0)
2 (ω f )

Y[m](v)
2 (ω f )

Y[m]
N(y) (ω f )

Y(0)
N(y) (ω f )

Y[m](v)
N(y) (ω f )

Figure 6.2: Frequency domain errors in variables model.

errors in variables (EV) stochastic model (figure 6.2),

U [m](ω f ) = U(0)(ω f ) + U [m](v)(ω f ),

Y [m](ω f ) = Y (0)(ω f ) + Y [m](v)(ω f ). (6.3)

The relationships between the true periodic input vector U(0)(ω f ) and output
vector Y (0)(ω f ), is given by

Y (0)(ω f ) = P(0)(ω f )U(0)(ω f ), (6.4)

in which P(0)(ω f ) ∈ CN(y)×N(u)
is the Multivariable Frequency Response Func-

tion associated with the linearised dynamic robot model. To facilitate notation,
the MFRF of system P(s) will be denoted by P(ω f ) instead of P(jω f ), which
was used in chapter 5.

The vectors U [m](v)(ω f ) ∈ CN(u)
and Y [m](v)(ω f ) ∈ CN(y)

occurring in the
frequency domain errors in variables model (6.3) are the Fourier transforms of
vectors u[m](v)(tn) and y[m](v)(tn). Because of the feedback loop both the con-
troller noise V [m](c)(ω f ) and the process noise V [m](p)(ω f ), corresponding to
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the time domain vectors v(c)(tn) and v(p)(tn), respectively, cause a correlation
between the input and output errors. The errors U [m](v)(ω f ) and Y [m](v)(ω f )
are related to the disturbing noise sources as

U [m](v)(ω f ) =M [m](u)(ω f ) + (I + C(ω f )P(0)(ω f ))−1

(−C(ω f )V [m](p)(ω f ) + V [m](c)(ω f )),

Y [m](v)(ω f ) =M [m](y)(ω f ) + (I + P(0)(ω f )C(ω f ))−1 (6.5)

(V [m](p)(ω f ) + P(0)(ω f )V [m](c)(ω f )),

(6.6)

in which I is an identity matrix and C(ω f ) is the MFRF of the controller model
C(s). Vectors M [m](u)(ω f ) and M [m](y)(ω f ) are the Fourier transforms of the
input and output measurement noise m[m](u)(tn) and m[m](y)(tn), respectively.
Clearly, the disturbances U [m](v)(ω f ) and Y [m](v)(ω f ) are mutually correlated
and are independent of the true input U(0)(ω f ).

Let the measurement vector, denoted by Z[m](ω f ), be the stacked input and
output vector of period m at frequency ω f , so

Z[m](ω f ) =

[
U [m](ω f )
Y [m](ω f )

]
(6.7)

It is assumed that the random errors

Z[m](v)(ω f ) =

[
U [m](v)(ω f )
Y [m](v)(ω f )

]
(6.8)

are complex normally distributed, with

E(Z[m](v)(ω f )) = 0, (6.9)

and

cov(Z[m](v)(ω f ), Z[n](v)(ω f )) = C(Z(v))(ω f )δmn, m, n = 1, · · · , N(m) (6.10)

in which δmn represents the Kronecker delta and E{} represents the expected
value. C(Z(v))(ω f ) ∈ C(N(u)+N(y))×(N(u)+N(y)) is a Hermitian symmetric noise
covariance matrix. Hence, the noise disturbance is assumed to be (second-
order) stationary and uncorrelated for different measured periods (m 
= n).
Notice that C(Z(v))(ω f ) accounts for the correlation among the input and out-
put noise, U [m](v)(ω f ) and Y [m](v)(ω f ).

Thus far, the framework was described for a linear manipulator and con-
troller model. In reality the controller and manipulator are both nonlinear sys-
tems. In the next section the influence of these nonlinearities on the identifica-
tion of a linearised robot model will be described.
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6.2 Stochastic identification framework for nonlin-
ear systems

Schoukens et al. (2005) describe the influence of nonlinear distortions on the
identification of linear SISO systems for an output error framework. Verboven
et al. (2006) present a similar approach for MIMO systems. In this work, the
nonlinear distortions will be included in the errors in variables framework, as
this framework is more suitable to describe the closed-loop behaviour of the
robot than the output error approach.

For nonlinear systems the MFRF depends on the excitation, therefore a class
of input signals is defined first. It is assumed that the true input signals u(0)(tn)
are described by random phase multi-sines, also called random multi-sines. A
signal u(tn) is a random phase multi-sine if

u(tn) =
1

N(tn)

N(t)/2

∑
f =−N(t)/2

|U(ω f )|e
j( 2π f n

N(t) +ϕ f ), (6.11)

with ϕ− f = −ϕ f , |U(ω f )| =
√

Su(ω f ) ≥ 0 and |U(ω f = 0)| = 0. Su(ω f ) is
a user-defined uniformly bounded real function with a countable number of
discontinuities representing the power spectrum of the excitation signal. The
phases ϕ f are the realisations of an independent (over f ) uniformly distributed
random process on [0, 2π).

Besides the input, the class of nonlinear systems should be defined also.
It is assumed that the nonlinear dynamics of the robot can be described by a
Volterra model, see appendix F and Schetzen (1980). A formal proof is omit-
ted, but it will be shown that the nonlinear phenomena of the Volterra model
do correspond with the experimental data very well. According to Schoukens
et al. (2005), the true output Y [o](NL)(ω f ) of a Volterra system excited by a ran-
dom multi-sine consists of 2 parts

Y [o](NL)(ω f ) = P(R)(ω f )U [o](0)(ω f ) + Y [o](s)(ω f ), (6.12)

in which P(R)(ω f ) is called the related dynamic system and Y [o](s)(ω f ) is the
stochastic nonlinear distortion. The superscript o between brackets denotes
the oth phase realisation of the random multi-sine. P(R)(ω f ) is the best linear
approximation to the actual nonlinear system. It consists, in turn, of two parts

P(R)(ω f ) = P(0)(ω f ) + P(B)(ω f ), (6.13)

with P(0)(ω f ) the underlying linear system, as defined in equation (5.47),
and P(B)(ω f ) the bias or symmetric errors due to the nonlinear distortions.
P(B)(ω f ) and as a result also P(R)(ω f ) depend on the applied power spectrum,
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the nonlinear distortions and the number of components N(t). It does not de-
pend on the actual realisation of the random excitation.

The stochastic nonlinear contribution Y [o](s) depends on the actual realisa-
tion of the random excitation. However, the reader should be aware that it
is not a random signal for a fixed excitation signal. Because of this contribu-
tion Y [o](s) the MFRF measurements are not smooth as a function of the fre-
quency, but scattered around their expected value (which equals P(R)). For a
formal overview of the properties of Y [o](s) and P(R) the reader is referred to
appendix F.

The nonlinearities will be included in the errors in variables framework
by adding the nonlinear noise sources Y [o](s)(ω f ) to the outputs of the related
linear system. The proposed relationships between the measured input and
output vectors and the actual vectors are given by the following nonlinear errors
in variables stochastic model that is presented in figure 6.3 and described by

U [m,o](ω f ) = U [o](0)(ω f ) + U [m,o](v)(ω f ) (6.14a)

Y [m,o](ω f ) = Y [o](0)(ω f ) + Y [m,o](v)(ω f ) + Y [o](s)(ω f ). (6.14b)

The true output vector Y [o](0)(ω f ) is related to the true input vector U [o](0)(ω f )
by

Y [o](0)(ω f ) = P(R)(ω f )U [o](0)(ω f ), (6.15)

with P(R)(ω f ) the earlier defined linear related system. For a Volterra sys-
tem excited by a random multi-sine the stochastic nonlinearities Y [o](s)(ω f ) are
asymptotically complex normally distributed, with mean

E{Y [o](s)(ω f )} = 0, (6.16)

and covariances

E{Y [o](s)(ω f )Y [o](s)H
(ω f )} = C(Y(s))(ω f ) (6.17)

and

E{Y [o](s)(ω f )Y [o](s)H
(ωl)} = O(N(0)−1

), k 
= l, (6.18)

in which the expected value E{} has to be taken over different realisations
of the multi-sine with equal power spectrum. Furthermore the Y [o](s)(ω f ) is
uncorrelated with the true input U [o](0)(ω f ) and stochastic noise Y [m,o](v)(ω f ).
The mathematical properties of Y [o](s)(ω f ) and P(R)(ω f ) are summarised in
appendix F.
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P(R)(ω f )

U[m,o]
1 (ω f )

U[o](0)
1 (ω f )

U[m,o](v)
1 (ω f )

U[m,o]
2 (ω f )

U[o](0)
2 (ω f )

U[m,o](v)
2 (ω f )

U[m,o]
N(u) (ω f )

U[o](0)
N(u) (ω f )

U[m,o](v)
N(u) (ω f )

Y[m,o]
1 (ω f )

Y[o](0)
1 (ω f )

Y[o](s)
1 (ω f ) Y[m,o](v)

1 (ω f )

Y[m,o]
2 (ω f )

Y[o](0)
2 (ω f )

Y[o](s)
2 (ω f ) Y[m,o](v)

2 (ω f )

Y[m,o]
N(y) (ω f )

Y[o](0)
N(y) (ω f )

Y[o](s)
N(y) (ω f ) Y[m,o](v)

N(y) (ω f )

Figure 6.3: Nonlinear frequency domain errors in variables model.

Combining U [m,o](ω f ) and Y [m,o](ω f ) of equation (6.14) as in equation (6.7)
gives

Z[m,o](ω f ) = Z[o](0)(ω f ) + Z[m,o](v)(ω f ) + Z[o](s)(ω f ). (6.19)

in which

Z[o](0)(ω f ) =

[
U [o](0)(ω f )
Y [o](0)(ω f )

]
, (6.20a)

Z[m,o](v)(ω f ) =

[
U [m,o](v)(ω f )
Y [m,o](v)(ω f )

]
, (6.20b)

Z[o](s)(ω f ) =
[

0
Y [o](s)(ω f )

]
. (6.20c)

The covariance of the stochastic noise C(Z(v))(ω f ) is defined in equation (6.10).
Combining the definitions of equations (6.17) and (6.20c) yields for the covari-
ance of the stochastic nonlinear distortions

C(Z(s))(ω f ) = E{Z[o](s)(ω f )Z[o](s)H
(ω f )} =

[
0 0
0 C(Y(s))(ω f )

]
. (6.21)
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88 Chapter 6. Identification of transfer functions

The next section presents a nonparametric identification method for es-
timating the multi-variable frequency response of the related linear system
P(R)(ω f ) and the noise properties C(Z(v))(ω f ) and C(Z(s))(ω f ). Unless stated
otherwise, from now on the related linear system will be denoted by P(ω f ).
Note that in general P(ω f ) = P(R)(ω f ) 
= P(0)(ω f ).

6.3 Nonparametric identification

Estimation of the MFRF P(ω f ) and its reliability requires the true input and

output vectors and their covariances C(Z(v))(ω f ) and C(Z(s))(ω f ). They are a
priori unknown but can be estimated from experimental data, using averaging
techniques. Due to the different phase realisation between the experiments, the
input and output vectors first need to be mapped to a common phase distribu-
tion before the signals may be averaged.

6.3.1 Mapping input and output signals to a common phase
realisation

Pintelon and Schoukens (2001) present a SISO method to project the input and
output signals for experiments with different inputs on a priori known deter-
ministic input signal which is commonly available in open-loop experiments.
A signal such as this is not available during closed-loop experiments. There-
fore a new MIMO approach is presented for the nonlinear errors in variables
framework discussed in the previous section.

In a closed-loop system not only the outputs Y [m,o](ω f ), but also the inputs
U [m,o](ω f ) are disturbed by the nonlinear behaviour of both the robot manip-
ulator and the feedback controller. To measure the nonlinear distortions of the
robot separate from the nonlinear disturbances of the controller, a new map-
ping signal is proposed, namely the measured input signal U [m,o](ω f ) aver-
aged over different periods of the same multi-sine. As a result, all plant nonlin-
earities are projected onto the output and the nonlinearities of the controller are
cancelled, which is in agreement with the nonlinear errors in variables model
of figure 6.3.

In the proposed mapping for each phase realisation of the multi-sine, N(u)

different (independent) experiments are performed, in which N(u) is the num-
ber of inputs. The design of these kinds of input signals is discussed in sec-
tion 6.5. The measured input and output vectors U [m,o](ω f ) and Y [m,o](ω f ) are
collected into matrices U[m,o](ω f ) and Y[m,o](ω f ), in which each column corre-
sponds to one experiment. Let the averaged input and output spectra for each
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phase realisation o be defined by

Û[o](ω f ) =
1

N(m)

N(m)

∑
m=1

U[m,o](ω f ),

Ŷ[o](ω f ) =
1

N(m)

N(m)

∑
m=1

Y[m,o](ω f ) (6.22)

and let the averaged absolute value of all inputs for different phase distribu-
tions be defined as

Ū(ω f ) =
1

N(o)

N(o)

∑
o=1

∣∣∣Û[o](ω f )
∣∣∣ . (6.23)

Projection of the measured input and output spectra on Û[o](ω f ) and multiply-
ing the result by Ū(ω f ), yields

Ũ[m,o](ω f ) = U[m,o](ω f )(Û[o](ω f ))−1Ū(ω f ), (6.24)

Ỹ[m,o](ω f ) = Y[m,o](ω f )(Û[o](ω f ))−1Ū(ω f ), (6.25)

provided matrices Û[o](ω f ) have full rank. This illustrates the requirement that
N(u) independent experiments should be performed for each phase realisation.
The columns of Ũ[m,o](ω f ) and Ỹ[m,o](ω f ) represent the transformed input and
output vectors. To simplify notation, the tilde will be dropped from now on
and it is assumed that all signals have been transformed to the same phase
distribution using the procedure described above.

6.3.2 Noise covariance estimation

The variance of measurement vector Z[m,o] has contributions to the stochastic
noise Z[m,o](v) and the nonlinear noise source Z[o](s). According to D’Haene
et al. (2004), the covariance of the stochastic contributions can be estimated by
measuring several periods of the same multi-sine, yielding

Ĉ[o](Z(v))(ω f ) =
1

N(m) − 1

N(m)

∑
m=1

(
Z[m,o](ω f ) − Ẑ[o](ω f )

)
(

Z[m,o](ω f ) − Ẑ[o](ω f )
)H

, (6.26)

in which

Ẑ[o](ω f ) =
1

N(m)

N(m)

∑
m=1

Z[m,o](ω f ). (6.27)
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90 Chapter 6. Identification of transfer functions

The sample covariance of the stochastic contributions Ĉ(Z(v))(ω f ) is defined as
the average of the covariances presented in (6.26), yielding

Ĉ(Z(v))(ω f ) =
1

N(o)

N(o)

∑
m=1

Ĉ[o](Z(v))(ω f ). (6.28)

The covariance of the nonlinear stochastic contributions can only be mea-
sured in combination with the stochastic contributions. Let the Ẑ(ω f ) denote
the sample mean of all measurements Z[m,o] and be defined by

Ẑ(ω f ) =
1

N(o)

N(o)

∑
o=1

Ẑ[o](ω f ). (6.29)

According to the noise assumptions presented in section 6.2, the covariance of
the sample mean Ẑ(ω f ) is defined by

Ĉ(Ẑ)(ω f ) =
Ĉ(Z(v))(ω f )

N(o)N(m)
+

Ĉ(Z(s))(ω f )

N(o)
(6.30)

and can be estimated by (D’Haene et al. (2004))

Ĉ(Ẑ)(ω f ) =
1

N(o)(N(o) − 1)

N(o)

∑
o=1

(
Ẑ[o](ω f ) − Ẑ(ω f )

)
(

Ẑ[o](ω f ) − Ẑ(ω f )
)H

. (6.31)

As a result of equation (6.30), the combination of estimators (6.28) and (6.31)
yields the covariance Ĉ(Z(s))(ω f ) of the nonlinear contributions.

6.3.3 MFRF estimation

Let the estimated and averaged (see equation (6.29)) input and output vectors
be collected in matrix Û and Ŷ, respectively, in which each column corresponds
to one experiment. According to Verboven et al. (2006), a maximum likelihood
estimation for MFRF P(ω f ) with regard to the errors in variables framework
of equation (6.3) is given by

P̂(ω f ) = Ŷ(ω f )Û−1(ω f ), (6.32)

provided that matrix Û−1(ω f ) has full rank. The design of input signals assur-
ing this condition is discussed in section 6.5. This estimator is also proposed for
the nonlinear errors in variables model of equation (6.14), since the noise con-
ditions are very similar. All noise sources are namely asymptotically described
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by a zero mean circular complex normal distribution. The estimate (6.32) be-
longs to the class of maximum likelihood estimators for which it has been
proven that they are consistent and asymptotically efficient.

According to Verboven et al. (2006), the multivariable expression for the
estimate of the noise covariance matrix for the MFRF is given by

Ĉ(P̂)(ω f ) = cov(P̂(ω f ))

=
[
Û(ω f )∗Û(ω f )T

]−1
⊗ B̂(ω f )ĈV(Ẑ)

(ω f )B̂(ω f )H (6.33)

with

B̂(ω f ) =
[
P̂(ω f ),−I

]
. (6.34)

The symbol ⊗ denotes the Kronecker matrix product and the asterisk denotes
the complex conjugate.

6.4 Parametric identification

6.4.1 Model estimation

The parametric system models are found by minimising a cost function that
expresses the match between measurements and the model. Let the vector p
contain the parameters of the nominator and denominator polynomials of true
linear system P(s, p) = B(s, p)/A(s, p), as presented in equation (5.38) and
(5.47). As a result of the nonlinearities in the system not P(0)(s) will be esti-
mated but the related linear system P(R)(s). Given the stochastic framework of
section 6.2, it is possible to derive a maximum likelihood estimator to identify
the related linear system P(R)(s), which will be denoted by P(s).

According to Pintelon and Schoukens (2001); Verboven (2002) and under
the assumption that the input and output noise spectra are complex normally
distributed the maximum likelihood (ML) cost function is defined by

V(ML)(p, Ẑ) =
N( f )

∑
f =1

|ε̂(ω f , p, Ẑ)|2, (6.35)

in which ε̂(ω f , p, Ẑ) are the weighted residuals,

ε̂i(ω f , p, Ẑ) = êi(ω f , p, Ẑ)/σ̂
(ê)
i (ω f , p), i = 1, · · · , N(y). (6.36)

The equation error êi(ω f , p, Ẑ) is defined by

ê(ω f , p, Ẑ) = Ŷ(ω f )A(s, p) − B(s, p)Û(ω f ) (6.37)
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92 Chapter 6. Identification of transfer functions

and σ̂
(ê)
i (ω f , p) represents the standard deviation of the equation error. The

standard deviation is computed from the sample covariance matrix, which is
given by

Ĉ(ê)(ω f , p) = 2Re
(

J(ω f , p)Ĉ(Ẑ)(ω f )J(ω f , p)H
)

(6.38)

in which

J(ω f , p) =
∂e(ω f , p, Z)

∂Z
=
[
−B(ω f , p) IA(ω f , p)

]
. (6.39)

The standard deviation of the equation error is given by σ̂
(ê)
i (ω f , p) =√

Ĉ(ê)
i,i (ω f , p).

Because ε̂i(ω f , p, Ẑ) is a nonlinear function of p, the cost function V(ML) is
a nonquadratic function of p. As with most nonlinear minimisation problems,
the method may converge to a local minimum. Therefore, it is important to
have starting values of sufficiently high accuracy. An (iterative) linear least
squares solution, presented by Pintelon and Schoukens (2001), is proposed for
this purpose. The linear least squares cost function is defined as

V(LS)(p, Ẑ) =
N( f )

∑
f =1

|ê(ω f , p, Ẑ)|2. (6.40)

For the parametrisation of equation (5.38) this cost function is quadratic in the
parameters p. The linear least square cost function has two drawbacks when
identifying continuous-time models: an overemphasising of high-frequency
errors and a bad numerical condition. The numerical condition of the problem
can be improved by scaling the frequency axis or parameterising the transfer
functions with orthonormal polynominals (Barel and Bultheel (1995)).

To overcome the lack of sensitivity to low frequency errors of the linear
least squares estimator, the equation error ê(ω f , p, Ẑ) is divided by an initial
estimate of the denominator polynomial A(s, p). The obtained weighted linear
least squares estimate p(1) can be used to calculate a (hopefully) better estimate
p(2), and so on. The ith step of this iterative linear least squares procedure
consists of minimising

V(IWLS)(p(i), Ẑ) =
N( f )

∑
f =1

|ê(ω f , p(i), Ẑ)|2

|A(ω f , p(i−1))|w
, (6.41)

with respect to p(i) for w = 2. The linear least squares estimate, denoted
by p̂(LS), is used as starting value p(0) = p̂(LS). According to Pintelon and
Schoukens (2001) setting the power of the denominator w smaller than 2 to
improve the convergence of the iteration scheme may be required.
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The maximum likelihood objective function with a parametrisation sim-
ilar to equation (5.39) and the iterated linear least squares objective func-
tions with parametrisation (5.38) are implemented in MATLAB. The nonlinear
least squares problem of the maximum likelihood method is solved using the
NONLSQ routine of the optimisation toolbox. Both the residual and the Jaco-
bian matrix of the residual are provided to this optimisation routine.

6.4.2 Model validation

The estimated model should be validated to verify whether or not the model
describes the measured data with sufficient accuracy. Several validation tech-
niques that are applied in the remaining of this chapter will be discussed below.

Value objective function

Assuming that all dynamics are captured by the estimated model, the resid-
ual contains only contributions from the measurement noise and the stochastic
nonlinearities. In the absence of model errors V(ML)(p̂, Ẑ) is asymptotically
(N( f ) → ∞) normally distributed with mean (Pintelon and Schoukens (2001),
page 334)

E{V(ML)(p̂, Ẑ)} ≈ N(o) − 1
N(o) − 2

(N( f )N(y) − N(p)/2) (6.42)

and variance

var(V(ML)(p̂, Ẑ)) ≈ (N(o) − 1)3

(N(o) − 2)2(N(o) − 3)
(N( f )N(y) − N(p)/2). (6.43)

The factors N(o)−1
N(o)−2

and (N(o)−1)3

(N(o)−2)2(N(o)−3)
in the equations above describe the

loss of efficiency as a result of using estimated noise models instead of the true
models. Note that an efficient estimator has the lowest possible parameter vari-
ance among all unbiased estimators. In this thesis the loss of efficiency is ex-
pressed in the number of different phase realisations of the random multi-sines
N(o). For the nonlinear stochastic contributions the expressions as mentioned
above are correct. However for the stochastic contributions the term N(o)N(m)

should be used, as can be seen from equation (6.30). Therefore, the presented
mean and variance are upper estimates.

With equations (6.42) and (6.43) it is possible to compute uncertainty
bounds for the cost function (6.35). A cost function that is outside these bounds
indicates model errors, because the residual cannot be explained by the es-
timated noise levels. An alternative method to detect under-modelling is to
check the correlation of the residuals.
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Correlation test residuals

Pintelon and Schoukens (2001) present a correlation test for the FRF of SISO
systems in an output error framework. A similar approach will be presented
below for the residuals of the maximum likelihood estimator in an errors in
variables approach.

According to equation (6.18), the nonlinearities Z[o](s) should be uncorre-
lated if the true input u[o](0) is a random multi-sine. The same holds true for
the stochastic contributions Z[m,o](s). As a result, the weighted residuals should
be uncorrelated as well. Correlated residuals point to unmodelled dynamics,
hence it makes sense to increase the model order.

The sample correlation of the residual is defined as

R̂(ε̂)
j (l) =

1
(N( f ) − N(l))

(N( f )−N(l))

∑
f =1

ε̂H
j (ω f )ε̂j(ω f +l), (6.44)

for l = 1, · · · , N(l) and j = 1, · · · , N(y). Because the variance dominates
the bias error in ε̂j(ω f ), it follows that the sample correlation R̂(ε̂)

j (l) is
asymptotically zero mean circular complex normally distributed (Pintelon and
Schoukens (2001)), with sample variance

Ĉ(R̂(ε̂))
j (l) =

(
(N(o) − 1)
(N(o) − 2)

)2
1

(N( f ) − N(l))
, (6.45)

for (N( f ) − N(l)) → ∞. During the validation tests, graphical representations

of the amplitude of R̂(ε̂)(l) are used. Hence, the complex variance should be

transferred into a bound on the amplitude. Since R̂(ε̂)(l) is asymptotically zero
mean circular complex normally distributed, the amplitude is chi-squared dis-
tributed with two degrees of freedom. For example the, 95% level is given by

the bound:
√

3

√
Ĉ(R̂(ε̂))

j (l).

Variance of the parameters

The covariance of the estimated parameters p̂ can be computed with (Pintelon
and Schoukens (2001), page 287)

Ĉ(p̂) =
N(o) − 1
N(o) − 3

(
2Re((ε′(p̂, Ẑ))Hε′(p̂, Ẑ))

)−1
(6.46)

in which

ε′(p̂, Ẑ) =
∂ε(p, Ẑ)

∂p

∣∣∣∣
p=p̂

. (6.47)
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Given the covariance of the model parameters, the covariance of other model
characteristics can be computed. The variance of the estimated transfer func-
tion due to the noise sensitivity of the parameters is given by:

Ĉ(Ĝ)(ω f , p̂) =
∂P(ω f , p)

∂p

∣∣∣∣∣
p=p̂

Ĉ(p̂)

⎛⎝ ∂P(ω f , p)
∂p

∣∣∣∣∣
p=p̂

⎞⎠H

. (6.48)

For ω f = 0 and ω f = ∞, |P(ω f , p)| corresponds to the rigid mass matrix
Mee and the motor inertia J[k](a), see equation (5.51) and (5.30), respectively.
Equation (6.48) is used to estimate their variances. Furthermore, this equation
is used to compute the uncertainty bounds for the parametric transfer function.

In addition, the variance of the drive stiffness k(m)[k]
1 can be estimated with

matrix Ĉ(p̂). Appendix E shows the inverse eigenvalue algorithm differenti-
ated with respect to the parameters p̂. A pre- and post-multiplication of matrix
Ĉ(p̂) with this derivative yields an approximation of the variance of the drive
parameters.

Comparison with nonparametric model

A simple validation test is to compare the differences between the measured
nonparametric MFRF P̂(ω f ) and the parameteric MFRF P(ω f , p̂). In order to
decide if the residuals P̂(ω f ) − P(ω f , p̂) are significantly different from zero,
their variance should be calculated. These residuals depend not only on p̂ but
also on the raw data P̂(ω f ). Note that p̂ and P̂(ω f ) are correlated stochastic
variables because they both depend on the same noise distortions Z(v)(ω f ).
No estimator is known for the variance of the residuals in the multivariate sit-
uation. But in general C(P)(ω f , p̂) � C(P̂)(ω f ) so that we can use Ĉ(P̂)(ω f ) as

the uncertainty on the residuals. If Ĉ(P)(ω f , p̂) ≈ Ĉ(P̂)(ω f ) we should accept
that in that region we cannot detect the presence of model errors, because no
reliable estimation of the residual uncertainty exists to decide whether or not
they are significantly different from zero.

6.5 Experimental design

For stability and safety reasons, the experiments are carried out in closed-loop.
The robot is excited with the feed-forward torques τ( f f )(tn) which have a fre-
quency spectrum that extends beyond the bandwidth of the closed-loop sys-
tem. A velocity reversal excites the unwanted nonlinear behaviour originating
from the asperity joint friction. To reduce the influence of velocity reversals,
the robot is programmed to follow a well-designed trajectory r(tn). First, the
design of the feed-forward signal τ( f f )(tn) is presented, and subsequently the
design of the trajectory r(tn).
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6.5.1 Design of feed-forward signal

To fulfill the condition that matrix U(k) should have full rank, at least N(u)

independent experiments should be carried out. Given a periodic signal f (tn)
we restrict our selection of references to

O( f f )(tn) = Υ f (tn), (6.49)

in which each column of O( f f )(tn) consist of the inputs τ( f f )(tn) for one exper-
iment. In Wernholt (2004) two options for matrix Υ are compared, namely an
identity matrix denoted by Υ(1) and matrix

Υ(2) =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 1
1 −1 1 1
1 1 −1 1

. . .
1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦ . (6.50)

Depending on the type of disturbances, one is preferred over the other. In
Verboven et al. (2006) it is shown that a so-called Hadamard matrix is optimal
in the sense that it minimises the Cramer-Rao lower band (or, equivalently,
maximises the Fisher information matrix). It can be shown that the same holds
true for Υ(2).

The selection of an identity matrix Υ(1) implies single input experiments.
Because of coupled dynamics between the different joints, excitation of a sin-
gle joint will result in the movement of all joints. The reaction of the controller
on this movement will be very closely correlated with the excitation signal. As
a result, N(y) multiple input experiments with correlated inputs are performed,
instead of the proposed single input measurements. The relatively low excita-
tion level of the non-excited joints will result in low signal to noise ratios. As
a result, the estimation of the true plant model is disturbed by the closed-loop
dynamics of the controller. Therefore, matrix Υ(2) as defined in equation (6.50)
appears to be the better choice. This choice will be validated with simulations
in section 6.6.7.

The use of periodic excitation signals avoids leakage, reduces stochastic
variance in nonparametric estimates for frequency response functions and can
be used to estimate the noise variances for parametric estimates. For these rea-
sons, a random multi-sine (equation (6.11)) is used as a feed-forward signal
τ( f f )(tn). By using odd excitations, the influence of the nonlinear distortions
can be decreased. Odd excitations are periodic signals that excite only the odd
frequencies (2k + 1)ω1 for k = 0, 1, . . . and ω1 the base frequency and the am-
plitudes of the even frequencies are set at zero. According to Schoukens et al.
(2005) each static or dynamic nonlinearity can be written as the sum of an even
and odd nonlinear system. Even nonlinearities do not contribute to the best
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linear approximation P(R). They only contribute to the nonlinear noise Y (s)

that acts as a disturbance during the measurement of P(R). An even nonlinear-
ity transfers all the power of an odd excitation to the even frequencies. Because
P(R) is only measured at the excited odd frequencies the measurements will no
longer be disturbed by the even nonlinearity, and the uncertainty on P(R) is
reduced.

Equation (6.33) shows that for nonparametric frequency response measure-
ments, the uncertainty is inversely proportional to the power of the excitation
signal. For signals that have a specified maximum peak value, it is convenient
to use the so-called crest factor as a measure of the signal quality. The crest fac-
tor for a signal is given by the ratio between the peak value of the signal and
its effective root mean square (rms) value, whereby effective means that only
power in the frequency band of interest is included in the rms calculation. To
maximise the crest factor of a random multi-sine, an iterative optimisation pro-
cedure is used, which is referred to in literature as the clipping algorithm (Pin-
telon and Schoukens (2001)). Starting from a random phase distribution and
a given amplitude spectrum this algorithm computes a more optimal phase
distribution, which minimises the Crest factor. By using this method, the out-
come is not necessarily a random multi-sine anymore. Note that the properties
of Y [o](s) presented in section 6.2 only hold true for excitation with a random
multi-sine. Fortunately, it appears that the optimised multi-sines are actually
less correlated than the initial ones.

6.5.2 Design of joint trajectory

The reference trajectory ṙ for the joint velocity is a (smoothed) square wave.
The square wave should reduce the number of unwanted velocity reversals
that lead to nonlinear friction behaviour (Wernholt (2004)). A smoothed square
wave is required, because the reference generator of the controller requires a
smooth trajectory. A true square wave will lead to infinite acceleration com-
mands. An extension of the method is proposed to further reduce the un-
wanted effects of the friction behaviour. By extracting the measurement vectors
u(tn), y(tn) of two experiments with an identical reference trajectory r(tn) but
opposite sign of the feed-forward input f (tn) some of the nonlinear terms will
cancel. The effectiveness of this approach will be demonstrated in section 6.7.

The amplitude of the square wave is a trade-off between the number of
velocity reversals, the total joint movement of the robot, and the applied input
power of the feed-forward. For a fixed number of velocity reversals and a
fixed measurement time a higher amplitude of the square wave will result in
larger movements of the robot joints. Because the dynamics of the robot are
pose dependent, it is hard to find a linear model that describes these large
joint rotations. If the amplitude of the square wave is too small compared to
the level of the feed-forward torques, the square wave is not able to prevent
velocity reversals introduced by the feed-forward torques.
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The base frequency of the square wave should always be an integer multi-
ple of the base frequency of the multi-sine (ω1), because the proposed identifi-
cation techniques require periodic excitation. To ensure that only odd frequen-
cies are excited as proposed in section 6.5.1, the reference trajectory is filtered
to remove all frequencies other than (2k + 1)ω1, k = 0, 1, · · · .

6.6 Simulation results

In this section, the identification techniques presented in this chapter will be
demonstrated on the simulated responses of a robot manipulator. Experimen-
tal results will be presented in the next section.

6.6.1 Simulation model

The used simulation model is based on the Stäubli RX90B industrial robot and
is similar to the model presented in section 5.9. This time all 6 joints of the
manipulator are included. The first 3 joints are flexible, the other 3 are mod-
elled rigid. To reduce the computation time the perturbation method has been
used, see Jonker and Aarts (2001) and section 3.4. Using this method, the dy-
namic model is split into two parts. A rigidified nonlinear system describes the
nominal rigid link motion of the manipulator and a linear time varying (LTV)
system describes the vibrational motion of the manipulator. Henceforth this
simulation model will be referred to as the nonlinear model.

A model of the true digital CS8 robot controller generates the feedback
torques to drive the robot along an excitation trajectory. The zero order hold
in the current loop of the digital feedback controller operates at a much higher
sample rate than the data capturing. As a result, the torque measurements are
corrupted by aliasing effects. To prevent aliasing during sampling, a digital
low pass filter with a cut off frequency of 90 Hz has been placed in the simula-
tion model before the data is captured at 250 Hz.

The measurement noise is modelled by adding uncorrelated Gaussian noise
to the measured motor current, the motor position and motor velocity. An ad-
ditional noise source can be found in the controller model, because the con-
troller includes noise generating operations like quantisation effects.

6.6.2 Experiment design

All simulations are computed around one nominal configuration, namely a
stretched horizontal position, see figure 5.2, page 75. The velocity profile for
the joints ṙ(tn) is a smoothed square wave with an amplitude of 0.11 rad/s and
a base frequency of ω1 = 1

4.096 Hz. The smoothing has been done by using a
skewed sine as upset function. The feed-forward signal f (tn) is a multi-sine
with the same base frequency, an amplitude of 45 Nm and a frequency grid
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(2k + 1)ω1 for k = 5, · · · , 160. Note that the harmonics k = 0, · · · , 4 are omit-
ted. This has been done to prevent velocity reversals. Furthermore, Crest-
factor optimisation has been performed using the Clipping algorithm (sec-
tion 6.5.1). As a result, the Crest factor has been decreased from 3.1 to 1.3. For
reasons of noise characterisation and data averaging, the signals are repeated
during N(m) = 8 periods. The input matrix Υ(2) defined in equation (6.50)
describes the feed-forward signals τ( f f )(tn) for 3 independent experiments, as
presented in equation (6.49). Each experiment is performed twice. The second
time, the sign of all feed-forward inputs was reversed for reasons explained
in paragraph 6.5.2. Furthermore, all experiments are repeated for 16 different
phase realisations of the multi-sine. Therefore 96 experiments in total are sim-
ulated. During each simulation the signals u(tn) and y(tn) corresponding to
the driving torques τ(a) and the drive angles e(m), respectively, are sampled.

The identification technique used is based on the response of the system to
periodic inputs. The model includes only a small amount of structural damp-
ing. Therefore it will take some time before the transients are damped out. For
this reason, each simulation starts with an additional period, which is deleted
from the data afterwards.

6.6.3 Identification of the nonparametric MFRF

After data processing in the time domain, namely the subtraction of two
identical experiments with only an opposite sign of the feed-forward, the
resulting signals are Fourier transformed. To improve the visibility of the
(anti-)resonance frequencies in FRF plots, the Fourier spectra of the drive an-
gles e(m) are multiplied by (jω f )2, which are the corresponding imaginary fre-
quencies squared. This is equivalent to differentiating the time domain signals
twice with respect to time. As a result the outputs y represent the drive ac-
celerations ë(m) instead of the drive angle e(m) and P represents the relation
between force and acceleration.

Next the input and output spectra of all experiments are mapped to a com-
mon phase realisation of the input spectra and the noise covariances of the
stochastic noise and the stochastic nonlinearities are estimated.

The nonparametric estimation technique described in section 6.3 is used to
estimate the MFRF of the robot model. Figure 6.4 shows the MFRF of the true
open-loop model, linearised around the nominal configuration during motion,
and the estimated model. Furthermore, the standard deviation for the esti-
mated MFRF is presented. Figure 6.4 shows that the differences between the
actual and estimated MFRF in the region around 40 Hz are relative large. Fur-
thermore, these differences are larger than predicted by the standard deviation
of the noise. So the bias error P(B)(ω f ) is larger than the errors originating from
stochastic noise Z[m,o](v)(ω f ) and stochastic plant nonlinearities Z[o](s)(ω f ). In
this simulation example an estimation of the bias error can easily be made,
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because the true plant model is known. In reality it is much more difficult to
estimate the size of the bias error and only the stochastic errors are known. The
figure shows that the stochastic errors do not always give a good indication of
the actual accuracy of the estimated model.
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Figure 6.4: Estimated nonparametric MFRF of the simulation example. The figures
show the true model (—), the estimated nonparametric model (- -) and the standard

deviation
√

Ĉ(Ĝ)(ω f ) of the estimated MFRF (· · · ).
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6.6.4 Identification of the parametric transfer functions

Next, parametric transfer functions are estimated using the maximum likeli-
hood estimator described in section 6.3. The optimisation is performed on the
excited frequency grid between 8 and 80 Hz. For lower frequencies, the sig-
nal to noise ratio is very low. The first interesting (anti-)resonance frequency
is around 15 Hz. The estimated parametric model contains 12 common poles
and 12 zeros for each joint separate. Furthermore, a symmetric model struc-
ture is estimated, so Pj,k(s) = Pk,j(s). Note that 2 poles in s ≈ 0, arising from
rigid-body modes, are cancelled by the time differentiation of the outputs.

The iterated linear least square cost function with parametrisation (5.38)
is used to obtain starting values for the maximum likelihood estimator. This
parametrisation in particular results in a bad numerical condition for the esti-
mation problem. Note that this parametrisation is required to obtain a linear
estimator. As a result, the outcome of this estimation is very sensitive to the
coefficient w in equation (6.41). The maximum likelihood estimator is a nonlin-
ear optimisation problem, which requires sufficiently accurate initial values.
Therefore, the coefficient w was varied between 0.2 and 2 and the best solu-
tion, according to the maximum likelihood cost function, has been used for the
nonlinear optimisation.

The left-side plots of figure 6.5 show the true and estimated parametric
MFRF for the simulation model. The figures on the right show the differences
between the estimated parametric MFRF and the true MFRF, including its 95%
confidence intervals. Although only the diagonal terms of the MFRF are pre-
sented, the off-diagonal terms are also included in the estimation. Because of
bias errors, the differences between the estimated parametric MFRF and the
MFRF for the true model are not within its 95% confidence interval. A compar-
ison between the parametric and nonparametric MFRF shows that the param-
eterised MFRF has a slightly smaller bias error than the nonparametric MFRF.

The value of the objective function (6.35) is 1647. Based on the 95% un-
certainty bounds of the objective function a value between 1404 and 1599 is ex-
pected. This indicates that some under-modelling is present and that the model
order should be increased. The sample correlation of the residual, see equa-
tion (6.44), including the 95% confidence bounds are presented in figure 6.6. A
significant peak for lag l = 0 can be seen, indicating that the residuals are un-

correlated. A closer look at the 95% confidence bounds of R̂(ε̂) demonstrates
that two of the residuals satisfy these bound. For output 1, 2 and 3 the per-
centages of samples within these bounds are are 95%, 85% and 97%, respec-
tively. Therefore, the model does not pass this correlation test, although the
differences are small. This also indicates that model errors remain and that the
model order should be increased. However, the number of poles and zeros of
the estimated model is already 2 more than that of the actual model in the es-
timated frequency range. The highest frequency of these two additional poles
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Figure 6.5: The figures on the left show the parametric estimate (- -) and the true
model (—) of the simulation example. The figures on the right show the differences
between the estimated nonparametric MFRF and the true model (· · · ) and the para-
metric MFRF and the true model (—). The 95% confidence interval of the parametric
estimation is denoted by (- -).

and zeros is 5.1 Hz. Thus, these poles and zeros only affect the low frequency
behaviour, where the data is very noisy.

The reasons for not passing the validation tests are the nonlinearities in the
closed-loop system, leading to a bias term in the estimated models. Although
in general the correlation test should not be sensitive to nonlinearities, this
only applies if the true input U [o](0) is an uncorrelated random multi-sine and
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Figure 6.6: Correlation residuals of the simulation example. The 95% confidence
bound is denoted by (· · · ).

the number of frequencies N( f ) go to infinity. An uncorrelated input signal is
almost impossible, because the robot is a closed-loop system. As a result, the
random multi-sine that is used as torque feed-forward τ( f f ), is coloured by
the sensitivity function before it is applied as input signal U [o](0). Simulations
showed that the averaging over different phase realisations of the multi-sine
improves the random character of the nonlinearities in the averaged input and
output signals.

Another reason for not passing the validation tests could be that only a local
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minimum has been found by the optimisation algorithm and not the global
one. However, starting the nonlinear optimisation with the true model yields
the same results as presented above. Therefore it is very likely that the global
optimum is found.

The absolute value of the estimated poles p̂r and zeros ẑj,k,r of the multi-
variable transfer function P̂(s) define the resonance frequencies ω and anti-
resonance frequencies μ of the robot model, respectively. A comparison be-
tween the true values and estimated values is presented in table 6.1. The table
shows only the flexible modes, the rigid-body modes of the true model and
the two additional low frequency poles and zeros of the estimated model are
omitted. The table shows that the maximum difference between the estimated
and actual frequencies is 1.54 Hz. Furthermore, the lower (anti-)resonance fre-
quencies are estimated more accurately than the highest. The reason for this is
the limited number of data points for the highest (anti-)resonance frequencies.

6.6.5 Identification of the physical parameters

The identification procedure presented in section 5.8 in combination with the
frequencies of table 6.1 yields an estimation of the drive parameters. Table 6.2
shows the estimated and true drive parameters of the simulation model and
the difference between both. It can be seen that the order of magnitude is cor-
rect but that there are some considerable differences, especially for k[2]

1 , which
is the drive stiffness of joint 1. One of the reasons for the estimation errors in
table 6.2 is the errors in the estimated (anti-)resonance frequencies, as has been
shown in table 6.1. Another reason is that the amount of estimated poles and
zeros is too low, compared to the degrees of freedom of the robot model. A
larger frequency spectrum, that covers all (anti-)resonance frequencies, should
be used for the identification. However, the maximum frequency is limited by
the sample rate of the data acquisition system. In section 5.9, table 5.2 it was
found that a reduced number of (anti-)resonance frequencies leads to an under-
estimation of the parameters. Table 6.2 shows an overestimation of the drive
inertias. This is caused by an underestimation of the low frequency amplitude
for the estimated transfer functions, while in table 5.2 it is assumed that the
low frequency amplitude is known exactly.

As a result the rigid mass matrix Mee, which is inverse proportional to the
low frequency amplitude according to equation (5.51), has been overestimated
as well. The entries of the estimated and true mass matrices Mee are presented
in table 6.3.

From the simulation results presented thus far, it must be concluded that
the accuracy of the method is relatively low. Any conclusions about the amount
of eigenfrequencies that can be identified will be addressed later in section 6.7,
because this is only meaningful for experimental data.
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r p(2r−1) p̂(2r−1) ω[r] ω̂[r] |ω[r] − ω̂[r]|
√

Ĉ(ω)

1 -1.3 ± 31.7j -1.7 ± 31.6j 31.7 31.6 0.08 0.04
2 -1.2 ± 41.5j -1.9 ± 41.7j 41.5 41.7 0.22 0.05
3 -0.6 ± 53.8j -1.0 ± 53.8j 53.8 53.8 0.03 0.03
4 -3.7 ± 71.1j -4.8 ± 70.8j 71.2 70.9 0.22 0.09
5 -4.0 ± 80.4j -5.7 ± 79.8j 80.5 80.0 0.52 0.36

r z1,1,(2r−1) ẑ1,1,(2r−1) μ
[r]
1,1 μ̂

[r]
1,1 |μ[r]

1,1 − μ̂
[r]
1,1|

√
Ĉ(μ)

1,1
1 -0.1 ± 14.9j -0.1 ± 14.9j 14.9 14.9 0.00 0.01
2 -0.7 ± 39.0j -1.5 ± 39.1j 39.0 39.1 0.12 0.07
3 -0.5 ± 53.6j -0.9 ± 53.6j 53.6 53.6 0.02 0.03
4 -3.5 ± 70.1j -4.3 ± 70.1j 70.2 70.2 0.02 0.15
5 -4.1 ± 79.9j -6.1 ± 79.4j 80.0 79.7 0.39 0.43

r z2,2,(2r−1) ẑ2,2,(2r−1) μ
[r]
2,2 μ̂

[r]
2,2 |μ[r]

2,2 − μ̂
[r]
2,2|

√
Ĉ(μ)

2,2
1 -0.4 ± 20.8j -0.6 ± 20.6j 20.8 20.6 0.11 0.02
2 -1.5 ± 32.6j -1.9 ± 32.4j 32.6 32.5 0.15 0.07
3 -0.5 ± 51.0j -0.6 ± 50.8j 51.0 50.8 0.14 0.01
4 -1.1 ± 59.1j -1.2 ± 59.2j 59.1 59.2 0.07 0.03
5 -4.8 ± 77.9j -5.6 ± 76.3j 78.0 76.5 1.54 0.41

r z3,3,(2r−1) ẑ3,3,(2r−1) μ
[r]
3,3 μ̂

[r]
3,3 |μ[r]

3,3 − μ̂
[r]
3,3|

√
Ĉ(μ)

3,3
1 -1.3 ± 31.7j -1.6 ± 31.5j 31.7 31.5 0.17 0.05
2 -1.4 ± 40.4j -2.2 ± 40.8j 40.5 40.8 0.39 0.06
3 -1.6 ± 50.4j -1.7 ± 50.4j 50.4 50.4 0.01 0.04
4 -0.6 ± 53.9j -1.1 ± 53.8j 53.9 53.8 0.05 0.04
5 -2.9 ± 77.2j -3.9 ± 76.3j 77.2 76.4 0.78 0.42

Table 6.1: The estimated and true (anti-)resonance frequencies of the simulation model
in Hz.

6.6.6 Analysis of the dominant nonlinearities

Simulations with a linearised time invariant manipulator and/or joint friction
model have provided insight into the dominant nonlinearities of the closed-
loop robot system. Two types of nonlinearities are considered separately: the
nonlinearities introduced by the joint friction model, and the nonlinearities
introduced by the manipulator model. Figure 6.7 shows the differences be-
tween the true MFRF and the MFRFs estimated from the simulated responses
of partly linear time invariant (LTI) models. The MFRFs in figure 6.7 are esti-
mated based on the simulated responses of one phase realisation of the multi-
sine. The figure shows that for low frequencies, up to 40 Hz, joint friction is the
most dominant nonlinear distortion. For higher frequencies the nonlinearities
introduced by the manipulator also have an important influence on the accu-
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Drive inertia (kg m2) Drive stiffness ×105 (N m rad−1)
J[1](a) J[3](a) J[5](a) k[2]

1 k[4]
1 k[6]

1
true 3.10 1.31 0.79 2.80 2.70 1.00
estimated 3.25 1.50 0.79 1.49 2.16 0.98
difference -0.15 -0.18 -0.01 1.31 0.54 0.02

Table 6.2: The estimated and true drive parameters of the simulation model.

Me1,e1 Me2,e2 Me3,e3 Me1,e2 Me1,e3 Me2,e3

true 17.02 13.87 2.55 0.01 0.01 3.20
estimated 17.24 14.56 2.58 -0.00 -0.05 3.35
difference -0.21 -0.69 -0.03 0.01 0.05 -0.15

Table 6.3: The estimated and true entries of mass matrix Mee in kg m2.

racy of the estimated MFRF. The differences between the estimated MFRF of
the full linearised model and the true model are much smaller than the differ-
ence between the MFRF of the partly linearised model and the true model. This
illustrates that the nonlinearities have a large influence on the accuracy of the
obtained MFRF. The remaining error in figure 6.7 between the MFRF of the full
linearised model and the MFRF of the true model is caused by the stochastic
noise, nonlinearities in the feedback controller and the data sampling process.

6.6.7 Selection of the input matrix

The selection of input matrix Υ(2) over Υ(1) is illustrated with a simulation ex-
ample. Based on simulated responses using both Υ(1) and Υ(2) a nonparametric
identification has been done, based on one phase realisation of the multi-sine.
The differences between the estimated and true model are presented in fig-
ure 6.8. The figure shows that input matrix Υ(2) gives more accurate results
than Υ(1). However, the differences are very small.
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Figure 6.7: The figures on the left show the nonparametric MFRF of the robot model
that is estimated on the simulated responses of an LTI manipulator and joint friction
model (- · -). The MFRF of the true LTI model is represented by (—). The MFRF
that is estimated on the responses of an LTI manipulator model and a nonlinear joint
friction model is represented by (· · · ). The MFRF that is estimated on the responses
of a nonlinear manipulator and an LTI joint friction model is represented by (- -). The
differences between the estimated models and the true model are presented on the right.
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Figure 6.8: The figures on the left show the MFRF estimate for the true model (- -) and
the difference between this model and the estimated model for an excitation specified by
Υ(1) (· · · ) and Υ(2) (—). The figures on the right show the standard deviation of the
MFRF for both estimates.
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6.7 Experimental results

This section presents the experimental results of the Stäubli RX90B robot.

6.7.1 Experiment design

The experiments described with regard to the simulation example in section 6.6
have also been performed on the Stäubli RX90B, which resulted in a data set
containing the input and output signals for 96 experiments.

The signals are normally sampled at 250 Hz. To check the presence of alias-
ing effects on the actual robot, one data set is captured at a higher sample rate
of 2 kHz. Unfortunately, only a small set of data can be captured at this sample
rate, making it unsuitable for identification. Fortunately, this data set showed
that the amount of power above 125 Hz is very low. So aliasing is, in reality,
not an issue and the data sampled at 250 Hz can be used for identification.

6.7.2 Data analysis

The input and output signals of two experiments with equal reference but op-
posite feed-forward are subtracted. The resulting signals are projected onto
the same phase distribution (see section 6.2) and averaged afterwards. Next,
the outputs are differentiated twice with respect to time and the covariances of
the stochastic input and output noise including the nonlinear contributions is
estimated. Figure 6.9 shows the average signal to noise ratios of the measure-
ments for each joint. The signal to noise ratio is defined by the amplitude of
the frequency spectrum divided by the standard deviation of the correspond-
ing measurement noise. The figure shows that the signal to noise ratios are
relative low, especially for the lower frequencies. In the output, the noise due
to nonlinearities is dominant. However, the stochastic input noise is consider-
able as well.

Usually, the influence of nonlinearities can be reduced by decreasing the ex-
citation level. Therefore, all experiments are repeated with a smaller multi-sine
amplitude, namely 30 Nm instead of 45 Nm. The obtained signal to noise ratios
are also presented in figure 6.9. A comparison between the signal to noise ratios
of both excitation levels demonstrates that a decrease of excitation level does
not decrease the influence of the nonlinearities. Actually, the overall signal to
noise ratio is a bit decreased. This takes place because the stochastic signal to
noise ratio is decreased. An improvement of the signal to noise ratio by taking
the mean of experiments with different phase realisations of the multi-sine is
possible. Therefore, a large set of experiments have been performed.

The averaging of two experiments with a switched sign of the feed-forward
signal should reduce the influence of the nonlinearities. The signal to noise
ratios of the data set with high excitation is compared to a data set without
switching. The results are presented in figure 6.10. The switching should
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Figure 6.9: The left-hand and right-hand figures show the signal to noise ratios of the
input and output signals, respectively. For the high excitation level the signal to noise
ratio corresponding to the stochastic noise Z(v) is denoted by (- -) and the nonlinear
output noise Y (s) is denoted by (—). For the low excitation level the signal to noise
ratio corresponding to the stochastic noise Z(v) is denoted by (· · · ) and the nonlinear
output noise Y (s) is denoted by (− · −).
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Figure 6.10: The left-hand and right-hand figures show the signal to noise ratios of the
input and output signals, respectively. For the data set in which switching has been
applied the signal to noise ratios are denoted by (—). For the non-switched data set the
signal to noise ratios are denoted by (· · · ).
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cancel the low frequency nonlinear dynamics excited by the smoothed square
wave. Consequently, the figure is zoomed in on the lower frequency range.
The switched data set contains twice as many experiments, therefore the sig-
nal to noise ratios of the non-switched set are multiplied by

√
2. For joints 1

and 2 the switching does indeed improve the signal to noise ratios. However,
for joint 3 the switching has a negative influence on the signal to noise ratios
for the output signals. This makes sense because the switching aims to reduce
the effect of the nonlinearities. However, the total input power is also reduced
by the switching. As a result, the relative influence of the stochastic noise is
increased.

6.7.3 Identification of the nonparametric MFRF

Next, the nonparametric MFRF P(ω f ) and its 95% confidence intervals are esti-
mated. The results are presented in figure 6.11. The confidence intervals of the
MFRF introduced by the stochastic noise are given separately from the over-
all covariance intervals, which include stochastic and nonlinear contributions.
The figure clearly shows that the variance due to nonlinearities is much larger
than the stochastic contributions.

6.7.4 Identification of the parametric transfer functions

Using the averaged data sets, parameterised transfer functions are estimated.
Initial models are estimated with the iterated least squares method, for varying
values of weighting power w and varying model orders. The transfer functions
are assumed to be symmetric, so Pj,k(ω f ) = Pk,j(ω f ). Unfortunately, none of
the estimated initial models could be used directly for the maximum likelihood
estimation. All the estimated initial models contain one of more poles and ze-
ros around 50 Hz. Because only the off-diagonal terms of the estimated MFRFs
(Pj,k(ω f ) for j 
= k) show a high but narrow spike at this frequency, this is prob-
ably not a mechanical resonance frequency but is caused by the electronics.
Furthermore, for high frequencies the estimated models also have poles and
zeros with a real part larger than zero. It appears that these poles and zeros
affect mainly the phase and not the amplitude of the estimated MFRF. There-
fore it is expected that these high frequency poles are caused by the sampling
process. For these reasons, the frequency range of the data set is restricted from
8 to 75 Hz and also data points around 50 Hz are removed. Next, one of the
initial models is adapted by removing poles and zeros around 50 Hz and above
75 Hz. This resulted in an initial model containing 20 poles and zeros and an
adapted data set for the nonlinear maximum likelihood optimisation.
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Figure 6.11: The figures show the MFRF (—) of the Stäubli RX90B estimated from
experimental data. Also the 95% confidence levels, arising from only stochastic noise
Z(v) (· · · ) and from stochastic and nonlinear noise Z(v) + Z(s) are presented (- -).
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The estimated parametric and nonparametric MFRFs are presented in fig-
ure 6.12, including their 95% confidence intervals. The figure shows that the
parametric MFRF is generally within the 95% confidence intervals of the non-
parametric MFRF, except for P1,1(ω f ) and P2,2(ω f ) between the 35 and 50 Hz.
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Figure 6.12: The figures on the left show the estimated nonparametric MFRF (- -) and
the parametric MFRF (—) of the experimental data set. The figures on the right show
the difference between the estimated parametric and nonparametric MFRF. The 95%
confidence interval of the nonparametric and parametric estimation is denoted by (· · · )
and (− · −), respectively.
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The objective function (6.35) for the maximum likelihood estimation is 1649,
which is outside the 95% confidence region given by 1231 - 1413. This indicates
that the model order is too low. Figure 6.13 shows the correlation test for the
residuals. A closer look shows that two of the outputs satisfy the 95% bound.
For outputs 1, 2 and 3 the percentages of samples within this bound are 97%,
96% and 90%, respectively. The number of lags l of R(ε̂)

3 (l) which exceeds the
95% bound is more than expected from the noise levels. However, the differ-
ences between the bound and the exceeding points is only small. A model
containing 22 poles and zeros gives a slightly lower objective function, namely
1601. However, the correlation test gives the same values. Based on the re-
sults presented thus far, it is concluded that all the dynamics present in the
measurement data are described by the model. Furthermore, it appears to be
impossible to remove any poles or zeros without further violating the valida-
tion tests. For an 18 order model the correlation test gives 96%, 94% and 88%.
Therefore it is concluded that 20 is the correct number of poles and zeros for
this data set.

The estimated model contains two real poles: one at -7 Hz and one at
75.4 Hz. For P1,1(ω f ), P2,2(ω f ), P3,3(ω f ) and P2,3(ω f ) = P3,2(ω f ), these poles
are more or less cancelled by two real zeros at the same frequencies. For the
other off-diagonal terms P1,2(ω f ) = P2,1(ω f ) and P1,3(ω f ) = P3,1(ω f ) these
poles are not cancelled. Furthermore, these transfer functions have zeros in the
right half plane. These zeros cannot be explained by the model structure pre-
sented in chapter 3. Due to the low signal to noise ratio for these off-diagonal
terms, these poles are probably originating from noise. Furthermore, there
could be a small delay between the different joints, as all the joints have their
own digital motion controller synchronised by a Sercos communication bus.
This delay could force the model estimation to approximate this delay by intro-
ducing zeros into the right half plane. It is expected that all the complex poles
and zeros in P1,1(ω f ), P2,2(ω f ), P3,3(ω f ) and P2,3(ω f ) correspond to actual vi-
bration modes because none of the poles and zeros cancel and all have a nega-
tive real part. The complex poles and zeros and corresponding (anti-)resonance
frequencies are presented in table 6.4, including their standard deviation.

6.7.5 Identification of the physical parameters

Using the parameter identification method presented in chapter 5 and the
(anti-)resonance frequencies presented in table 6.4, the drive parameters and
their standard deviation are estimated. Because 9 vibration modes are esti-
mated, the identified parameters correspond to the model presented in chap-
ter 3, which also has 9 vibration modes, namely 3 for each joint. The estimated
parameters are presented in table 6.5. The standard deviation of the drive stiff-
ness is considerably. Furthermore the table shows that the estimated drive
stiffnesses are lower than the estimates presented in table 4.1, page 48. How-
ever, there might be some differences between both estimations, because the
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Figure 6.13: Correlation of the residuals for the experimental data set. The 95% confi-
dence bound is denoted by (· · · ).

loading conditions are different and both estimates have considerable accuracy
margins. The drive inertias are comparable with the values identified from the
rigid identification experiments done by Waiboer (2007), see the ’true’ values
in table 6.2, page 106. Note that part of the transmission inertia, which in the
rigid model is added to the drive inertia, in the flexible model is added to the
link inertia, depending on the exact location of the drive stiffness. Therefore,
the estimated drive inertias of the flexible model are lower than of the rigid
model.
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r p̂(2r−1) ω̂[r]
√

Ĉ(ω)

1 -0.8 ± 28.3j 28.4 0.02
2 -1.3 ± 30.2j 30.3 0.10
3 -1.3 ± 32.5j 32.5 0.08
4 -3.5 ± 40.8j 41.0 0.10
5 -3.2 ± 44.6j 44.7 0.08
6 -0.6 ± 62.5j 62.6 0.04
7 -18.5 ± 61.4j 64.1 1.55
8 -2.3 ± 67.1j 67.1 0.17
9 -3.9 ± 69.2j 69.3 0.42

r ẑ1,1,(2r−1) μ̂
[r]
1,1

√
Ĉ(μ)

1,1
1 -0.3 ± 15.1j 15.1 0.03
2 -0.9 ± 28.5j 28.5 0.10
3 -0.4 ± 31.6j 31.6 0.03
4 -1.5 ± 39.8j 39.8 0.09
5 -3.9 ± 42.6j 42.8 0.23
6 -0.8 ± 61.8j 61.8 0.07
7 -1.6 ± 64.6j 64.6 0.14
8 -3.5 ± 68.2j 68.3 0.51
9 -19.5 ± 65.6j 68.4 2.02

r ẑ2,2,(2r−1) μ̂
[r]
2,2

√
Ĉ(μ)

2,2
1 -1.0 ± 20.7j 20.8 0.03
2 -1.6 ± 29.5j 29.5 0.12
3 -0.5 ± 30.4j 30.4 0.04
4 -1.0 ± 32.9j 33.0 0.06
5 -1.9 ± 43.9j 44.0 0.15
6 -0.6 ± 62.6j 62.6 0.04
7 -22.9 ± 61.5j 65.7 2.01
8 -2.5 ± 66.9j 66.9 0.23
9 -3.5 ± 68.2j 68.3 0.48

r ẑ3,3,(2r−1) μ̂
[r]
3,3

√
Ĉ(μ)

3,3
1 -0.9 ± 28.2j 28.2 0.04
2 -1.3 ± 30.1j 30.2 0.12
3 -1.3 ± 32.3j 32.4 0.10
4 -2.9 ± 37.6j 37.7 0.15
5 -1.9 ± 44.0j 44.1 0.10
6 -0.5 ± 62.5j 62.5 0.05
7 -4.6 ± 63.0j 63.1 0.53
8 -16.6 ± 62.7j 64.9 2.11
9 -2.0 ± 67.0j 67.0 0.31

Table 6.4: The complex poles and zeros and corresponding (anti-)resonance frequencies
in Hz, estimated using the experimental data set.

Drive inertia (kg m2) Drive stiffness ×105 (N m rad−1)
J[1](a) J[3](a) J[5](a) k[2]

1 k[4]
1 k[6]

1
estimate 3.54 3.63 1.47 1.39 1.68 0.62
st. dev. 0.00 0.00 0.07 0.49 0.48 0.21

Table 6.5: The estimated drive parameters of the Stäubli RX90B robot manipulator,
including their standard deviations.

According to equation (5.51) the identified transfer functions yields a pre-
diction of the rigid mass matrix. In table 6.6 this estimate is compared to the
results of Waiboer (2007). The latter are expected to be more accurate, since
these results are based on dedicated low frequency identification experiments.
However, no quantitative accuracy level is known for this estimate. Fortu-
nately, the differences between both estimates are small, except for the cou-
pling term Me2,e3 . Overall, the new frequency domain identification method
gives reasonable results for the rigid mass matrix.
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Me1,e1 Me2,e2 Me3,e3 Me1,e2 Me1,e3 Me2,e3

flexible identification 17.16 15.03 2.54 -0.09 0.04 2.36
st. dev. 4.14 3.88 1.59 0.00 0.20 1.54
rigid identification 17.02 13.87 2.55 0.01 0.01 3.20
difference -0.14 -1.16 0.00 0.10 -0.03 0.84

Table 6.6: The estimated entries of mass matrix Mee in kg m2, including their stan-
dard deviation. Furthermore, the results of a rigid identification performed by Waiboer
(2007) and the difference between both estimates are presented.

6.8 Discussion

This chapter presented a MIMO errors in variables framework to identify Mul-
tivariable Frequency Response Functions of the Stäubli RX90B. The MFRF
are parameterised by common denominator rational transfer functions, from
which the robots resonance and anti-resonance can easily be extracted. Next,
the inverse eigenvalue theory of chapter 5 is used to identify the drive pa-
rameters. To validate the identified transfer functions nonparametric identifi-
cation methods have been presented as well. A lot of effort was put into in-
cluding the nonlinearities in the errors in variables stochastic framework and
the experimental design strategy. Both the simulation example and the ex-
perimental analysis have shown that this is indeed an important issue for the
Stäubli RX90B.

The uncertainty of the results is mainly caused by the nonlinear distortions
of the model. The validation of the models is also much more difficult because
of these nonlinear distortions. Because the identification is applied to a closed-
loop MIMO system, for which it is difficult to perform several random exci-
tations with a constant power spectrum, the ’standard’ validation techniques,
such as the residual correlation test and the value of the objective function,
do not give reliable results. A finer frequency grid than that has been used
thus far, would simplify the validation. For a fine frequency grid it is easier to
distinguish between the smooth behaviour of the true model and the noisy be-
haviour of the stochastic noise and the stochastic nonlinear distortions. At the
moment, the frequency grid is limited by the buffer size of the data acquisition
system and the total measurement time.

Simulations showed that the predicted accuracy of the estimated transfer
functions is overestimated because of bias errors. However, the predicted ac-
curacy margins give at least an indication of the accuracy level of the estimated
transfer functions and drive parameters.

If the number of (anti-)resonance frequencies that can be extracted from the
experimental setup is too low compared to the assumed model structure, like
in the simulation example, a reduction of the number of lumped stiffnesses
would be a logical step. Although this may be possible for linear models, it is
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hard to decrease the order of the nonlinear system without affecting the static
behaviour. Therefore, it is important to estimate all the (anti-)resonance fre-
quencies for the nonlinear model.

In general, the frequency domain parameter identification approach pre-
sented in this and the previous chapter gives much more insight into the be-
haviour of the manipulator than the linear least squares method from sec-
tion 4.2. Instead of one large fit that is either correct or incorrect, the fre-
quency domain approach estimates transfer functions describing the dynamic
behaviour for each drive separately. The proposed method is much more
involved than the linear least squares method, but the intermediate results,
like the transfer functions, are also very useful for analysing the dynamic be-
haviour.

The experimental analysis showed that the number of modes that can be
extracted from the data set is in agreement with the number of modes of the
linearised robot model. The estimated accuracy as a result of measurement
noise and stochastic nonlinear distortions is rather low for the drive stiffness
k[k+1]

1 and rigid mass matrix Mee. A comparison of the estimated stiffness pa-
rameters with the estimates from the static identification does not give any
reason to reject the parameter estimates, as the estimated accuracy intervals
for both estimates are substantial. The identification method gives reasonable
estimates for the rigid mass matrix Mee, although dedicated rigid identification
experiments probably give more accurate results. The accuracy of the drive in-
ertias J[k](a) is much better. Furthermore, for the estimated drive inertias no
representative other values are available. Overall, the results demonstrate the
abilities of the proposed method.
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Chapter 7

Conclusions and discussion

In this chapter, the conclusions from the preceding chapters will be sum-
marised. Next, recommendations for further research will be presented.

7.1 Conclusions

This thesis presented modelling and identification techniques that have been
developed for the realistic dynamic simulation of industrial robots. The key to
accurate dynamic simulation lies in the availability of a model structure with
a set of appropriate dynamic parameters that model the relevant physical phe-
nomena of the robot correctly. It has been shown that for the Stäubli RX90B the
joint and drive flexibilities are of the same order of magnitude. The modelling
of robots with both joint and drive flexibilities has not received much attention
in literature so far.

• In this thesis a robot model is presented, which includes both joint and
drive flexibilities. The equations of motion are derived using a nonlin-
ear finite element method. Dynamic behaviour arising from inertia and
gravitational forces, flexibilities, structural damping, joint friction and a
gravity compensating spring, which are all present in the Stäubli RX90B,
are included in the model. Furthermore, closed-loop simulations can be
carried out with a model of the actual CS8 motion controller.

• A new lumped mass formulation is presented, which includes a vector
to describe the centre of mass of an element with respect to one of the el-
ement nodes. The introduction of this vector enables a parameter linear
formulation of the equations of motion, which facilitates the parameter
identification procedure. Furthermore the number of elements and, as a
result, the computation time can be reduced, because no additional ele-
ment is required to describe the centre of mass of a link.
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The identification of rigid robot models is a research area that is mostly
covered and for which standard techniques are available. The identification of
flexible robot models is less common and no standard techniques are available.

• The model structure presented in his work is appropriate for a linear least
squares identification technique. Simulations showed that this technique
is capable of estimating the dynamic parameters for the flexible robot
model, provided that all degrees of freedom can be measured, i.e. drive
angles and flexible deformations.

• The main issue when identifying flexible models is the lack of sensors,
because with regard to industrial robots usually only the motor rotations
are measured. In this work it has been attempted to compute the elas-
tic deformations of the Stäubli RX90B from the relative displacement be-
tween two links. This displacement is measured with a Krypton Rodym
6D camera system. Unfortunately, it appeared that this measurement sys-
tem is unsuitable for measuring the small elastic deformations, because
the absolute accuracy is too low. The joint and drive deformations are
expressed in a local coordinate frame attached to one of the correspond-
ing links. The specification of these local frames with respect to the base
frame of the measurement system is too inaccurate as well. The speci-
fication of local frames to express the joint deformations with respect to
a global coordinate frame is always an issue when measuring the joint
deformations. This applies not only to camera systems, but for other
external sensors as well. This is the case especially if the small joint de-
formations are computed from large and absolute link measurements.

Because the time domain linear least squares method did not succeed for
our application, a frequency domain inverse eigenvalue identification method
is proposed.

• Simulations showed that the drive inertia and drive stiffness parameters
of the nonlinear robot model can be identified with this identification
method, provided that all resonance and anti-resonance frequencies for
the drives are accurately known.

• Although only drive parameters can be identified, the identification
method can be applied to robots with both drive and joint flexibilities.

• It is shown that a normalisation of the eigenvectors with respect to the
mass matrix leads to explicit relationships for the mass and stiffness ma-
trix as function of the eigenvalues and eigenvectors. These relationships
enable a physical interpretation of a thus far implicitly defined scaling
factor in the MFRF of a undamped mechanical system. As a result, it can
be shown that the low and high frequency amplitudes of the MFRF con-
verge to the inverse of the rigid mass matrix M̃ee and the full mass matrix
M̃, respectively.
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The identification method requires a full set of (anti-)resonance frequencies
for each joint. The use of frequency domain system identification techniques
to extract the (anti-)resonance frequencies from experimental data has been
proposed.

• The errors in variables framework is an appropriate description of the
measurement conditions for the Stäubli RX90B robot. Firstly, because of
the occurrence of a considerable amount of stochastic noise on the input.
Secondly, because of correlated stochastic input and output noise as a
result of closed-loop experiments. Thirdly, because of the large stochastic
nonlinear distortions.

• The robot nonlinearities appear to have a large influence on the reliability
of the estimated linear model. Therefore, to include the stochastic nonlin-
ear distortions in the noise model and apply data averaging techniques,
sufficient different random phase realisations should be measured.

• In general, the iterated weighted least squares method does not provide a
sufficiently accurate initial value for the maximum likelihood estimator.
Therefore, different weighting factors and some manual pole and zero
manipulation are required.

• The maximum likelihood estimator enables quantitative validation meth-
ods to evaluate the accuracy of the estimated MFRF, the (anti-)resonance
frequencies and the drive parameters.

• The inverse eigenvalue identification method is rather complex and the
model computation very time consuming. However, this frequency do-
main method gives much more insight into the robot dynamics than the
linear least squares method. Instead of one large fit, the frequency do-
main approach estimates transfer functions describing the dynamic be-
haviour for each drive separately. These transfer functions are already
very useful for analysing the dynamic behaviour.

• The number of modes that can be identified from experimental data is in
agreement with the number of modes of the proposed model structure.
The estimated accuracy as a result of measurement noise and stochastic
nonlinear distortions is rather low for the rigid mass matrix Mee and the
drive stiffness k[k+1]

1 . The estimated accuracy for the drive inertia J[k](a) is
very reasonable. In addition, a comparison with other estimates does not
give any reason to reject the parameter estimates or the model structure.
These results prove the ability of the proposed method.



�

�

“ThesisV2” — Toon Hardeman — 2008/1/6 — 17:11 — page 124 — #144
�

�

�

�

�

�

124 Chapter 7. Conclusions and discussion

7.2 Discussion and recommendations

This thesis was focussed on the joint and drive flexibilities of the Stäubli RX90B.
To further improve the accuracy of the simulation model, more aspects should
be included. The floor and the mounting of the robot on the floor are not in-
finitely stiff. An appropriate model extension to describe this flexibility could
be two orthogonal bending stiffnesses between the floor and the pillar on
which the robot is mounted. Static measurements have shown that the cor-
responding stiffnesses are in the order of 1.2 × 107 N m rad−1. This is much
larger than the measured joint and drive stiffnesses and therefore not included
in the model thus far. However, for higher frequency ranges or an increase in
the total mass due to an additional payload, this stiffness may influence the
dynamic behaviour of the robot and should be included in the model.

Another model extension would be the inclusion of drive nonlinearities,
leading to a drive angle dependent gear ratio. Scheringa (2006) showed that
these drive nonlinearities are present in the Stäubli RX90B. However, more re-
search is required to measure and model the kinematic relations and include
these in the nonlinear finite element model. It would be very interesting to in-
vestigate the effects of these nonlinearities on the tip motion of the robot, as the
drive nonlinearities will excite the flexibilities in the robot model.

The model of the CS8 motion controller introduces and excites a lot of high
frequency dynamics in closed-loop simulations of the robot. This gives alias-
ing problems during sampling and leads to a very small integration time step
during simulation. It appears that these aliasing problems are not present in
reality. Therefore it is worthwhile to check the correctness and implementation
of the controller model.

Further research is also required with regard to parameter identification
techniques for flexible robots. Thus far the inverse eigenvalue technique only
provides the drive inertia and drive stiffness. The real parts of the estimated
poles and zeros contain information about the damping of the system. It
would be useful to exploit this information for an inverse eigenvalue problem
including damping.

In order to estimate the remaining parameters of the model, other identifi-
cation experiments should be performed. A unique estimate of all the parame-
ters can only be obtained using external measurements, from which the elastic
joint and drive deformations can be reconstructed. Orientating measurements
have shown that acceleration sensors are able to measure the small vibrations
of the robot. Research should be done to extract the physical coordinates of
the nonlinear model from several acceleration measurements. A frequency do-
main version of the linear least squares method presented in section 4.2 is sug-
gested to identify the parameters. As it is very hard to obtain accurate absolute
position measurements from acceleration sensors, a frequency domain method
is more appropriate than the time domain method.
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To improve the signal to noise ratios of the measurement signals, more re-
search should be done on the design of the excitation signals. In first instance,
an increase of the amplitude of the feed-forward signal τ( f f ) could be an op-
tion. Second, the designed feed-forward signal could be compensated by the
closed-loop sensitivity function, so that the actual input u is white instead of
the feed-forward signal τ( f f ). Third, the maximum amplitudes could be var-
ied for each joint, depending on its maximum driving torque. As already men-
tioned, a finer frequency grid is also advisable in order to simplify the valida-
tion of parametric models.
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Appendix A

Spatial finite elements

A.1 Spatial truss element

The position of the slider truss element is determined by the position vectors
x(p) and x(q) of the end nodes p and q, see figure A.1. The vector of nodal co-
ordinates for the truss element is then expressed by x(k) = (x(p), x(q)). These
six Cartesian coordinates describe the position of the truss element relative to
the fixed inertial coordinate axes (x, y, z). A possible rotation of the element
around the axis pq is not involved in the description of the element position.
The element thus has five degrees of freedom, which give rise to a single defor-
mation mode, associated with the elongation of the element. This elongation
can be expressed as a function of the instantaneous values of the position coor-
dinates (x(p)

i , x(q)
i ) and the reference length l[k]0 of the element. The elongation

of the truss element is defined by

e[k]
1 = D[k]

1 (x[k]) = l[k] − l[k]0 , (A.1)

in which l[k] is the actual length of the element, which is determined by the
instantaneous distance between the nodes p and q, that is:

l[k] = ||x(p) − x(q)||. (A.2)

A.2 Lambda element

Although the λ-element is not a real structural element, the way in which it is
used in the theory justifies its presentation as an element. According to Euler,
an arbitrary rotation can always be described as a rotation around a certain axis
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128 Appendix A. Spatial finite elements

x

y

z x(p)

x(q)

Figure A.1: The spatial truss element

nφ at certain angle φ. The set of Euler parameters that describes this rotation
forms the unit quaternion[

λ0
λφ

]
, (A.3)

which is defined as:

λ0 = cos
(

φ

2

)
, (A.4a)

λφ =

⎡⎣λ1
λ2
λ3

⎤⎦ = nφ sin
(

φ

2

)
. (A.4b)

Rotations described in terms of Euler parameters are only real rotations if they
satisfy the constraint equation

λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1, or λTλ = 1. (A.5)

Let the deformation function for the λ-element be defined as

e[k] = D[k] = λTλ − 1. (A.6)

Consequently the constraint condition for the Euler parameters is of a similar
form as the un-deformability condition e[k] = 0 for the λ-element. For each set
of Euler parameters used in the robot model a λ-element is added to the list
of elements with the condition that the deformation modes belonging to the
λ-elements must be zero.

A.3 Spatial hinge element

The spatial hinge element illustrated in figure A.2 describes the relative rota-
tion between nodes p and q. The hinge element was introduced by Werff (1983).
Later on, Geradin et al. (1986) presented the expressions for the deformations
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R(p)nx̄

R(p)nȳ

R(p)nz̄

R(q)nx̄

R(q)nȳ

R(q)nz̄

p q

l → 0

Figure A.2: Spatial hinge element

in their present form. The formulation presented below is taken from Waiboer
(2007).

Using the Euler parameters, the vector of nodal coordinates for the hinge
element is expressed as

x[k] =

[
λ(p)

λ(q)

]
=
[
λ

(p)
0 λ

(p)
1 λ

(p)
2 λ

(p)
3 | λ

(q)
0 λ

(q)
1 λ

(q)
2 λ

(q)
3

]T
. (A.7)

The configuration of the hinge element is then described by the two sets of
Euler parameters λ(p) and λ(q) describing the orientation of the orthogonal
triads (n(p)

x̄ , n(p)
ȳ , n(p)

z̄ ) and (n(q)
x̄ , n(q)

ȳ , n(q)
z̄ ) rigidly attached to nodes p and q.

Note that nodes p and q coincide and that initially their orientation is identi-
cal. The relative rotation of the triad (n(q)

x̄ , n(q)
ȳ , n(q)

z̄ ) with respect to the triad

(n(p)
x̄ , n(p)

ȳ , n(p)
z̄ ) is described by the set of Euler parameters λ(r) which is ob-

tained from the quaternion product (Geradin et al. (1986))

λ(p) ◦ λ(r) = λ(q), (A.8)

in which

λ(p) ◦ λ(r) = (λ
(p)
0 λ

(r)
0 ,−λ

(p)
φ · λ

(r)
φ , λ

(p)
0 λ

(r)
φ + λ

(r)
0 λ

(p)
φ + λ

(p)
φ × λ

(r)
φ ). (A.9)

Multiplying both sides of equation (A.9) with the adjoint quaternion λ̄
(p),

which is defined as

λ̄
(p) =

[
λ

(p)
0

−λφ(p)

]
, (A.10)

yields the expression for the relative rotation r of node q with respect to node p

λ(r) = λ̄
(p) ◦ λ(q). (A.11)
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130 Appendix A. Spatial finite elements

This is a relative rotation expressed in the global reference frame. Usu-
ally the hinge is initially oriented according to the local reference frame
(n(p)

x̄ , n(p)
ȳ , n(p)

z̄ ). Expressing the relative rotation λ(r) in this local reference
frame yields

λ′(r) = (λ
(r)
0 , λ

(r)
φ · n(p)

x̄ , λ
(r)
φ · n(p)

ȳ , λ
(r)
φ · n(p)

z̄ ). (A.12)

The hinge element has a total of eight nodal coordinates. As a rigid body
the element has three degrees of freedom and with two constraint deformation
modes for the Euler parameters (equation (A.6)) this leaves a total of three de-
formation modes. The deformation modes of the hinge element are expressed
as

relative rotation : e[k]
1 = D[k]

1 (x[k]) = 2 arctan

(
λ′

1
(r)

λ′
0
(r)

)
, (A.13a)

bending : ε
[k]
2 = D[k]

2 (x[k]) = 2(λ′
0
(r)

λ′
2
(r) − λ′

1
(r)

λ′
3
(r)), (A.13b)

ε
[k]
3 = D[k]

3 (x[k]) = 2(λ′
1
(r)

λ′
2
(r) + λ′

0
(r)

λ′
3
(r)). (A.13c)

The first torsional deformation mode e[k]
1 represents a large relative rotation

around the joint axis nx̄. Bending mode ε
[k]
2 represents a bending deformation

of the main axis n(q)
x̄ , into the negative n(p)

z̄ direction. Bending mode ε
[k]
3 repre-

sents a deformation of the main axis into the positive n(p)
ȳ direction.

A.4 Spatial beam element

Figure A.3 shows the spatial beam element in an (x, y, z) inertial coordinate
system. The configuration of the element is determined by the vectors x(p)

and x(q) of the end nodes and the angular orientation of orthogonal triads
(nx̄, nȳ, nz̄) rigidly attached to each end point. In the undeflected state, the
triads coincide with the axis pq and the principle axes of its cross-section. The
angular orientation of the triads at either end point with respect to their initial
(undeflected) orientation is specified by rotation matrices R(p) and R(q). If the
beam is rigid then the rotation matrices are identical and in the initial unde-
flected state they are equal to the identity matrix.

Therefore, the vector of nodal coordinates for the beam element using
Euler parameters is given by x[k] = (x(p), λ(p), x(q), λ(q)). With the vector
l[k] = x(q) − x(p), the deformation functions of the beam element can now be
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x

y

z

nx̄

nȳ

nz̄

nx̄

nȳ

nz̄

pp

q
q

Rpnȳ

Rpnȳ

Rpnz̄

Rqnx̄

Rqnȳ

Rqnz̄

Figure A.3: The spatial beam element

written as follows (Besseling (1982)):

elongation : ε
[k]
1 = D[k]

1 = ‖l[k]‖ − l[k]0 , (A.14a)

torsion : ε
[k]
2 = D[k]

2 = [(R(p)nz̄, R(q)nȳ) − (R(p)nȳ, R(q)nz̄)]l
[k]
0 /2,

(A.14b)

bending : ε
[k]
3 = D[k]

3 = −(R(p)nz̄, l[k]), (A.14c)

ε
[k]
4 = D[k]

4 = (R(q)nz̄, l[k]), (A.14d)

ε
[k]
5 = D[k]

5 = (R(p)nȳ, l[k]), (A.14e)

ε
[k]
6 = D[k]

6 = −(R(q)nȳ, l[k]). (A.14f)

Here, ‖l[k]‖ and l[k]0 represent the actual length and the reference length of the
element; ( , ) stands for the inner product of two vectors. The deformation
mode coordinates in equation (A.14) possess the proper invariance with respect
to rigid body motions of the beam element.
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Appendix B

Differentiation equation (3.43)
with respect to time

With the identities ΛTΛ = (I − λλT), in which I is a 4 × 4 identity matrix,
and Λ′λ = 0 (Nikravesh (1988)) the second term of equation (3.43) may be
simplified to

4ΛT d
dt

(ΛΛ′TJ′[k](p)Λ′ΛTΛλ̇) = 4ΛT d
dt

(ΛΛ′TJ′[k](p)Λ′λ̇). (B.1)

Carrying out the differentiation with respect to time yields

4ΛT d
dt

(ΛΛ′TJ′[k](p)Λ′λ̇) =4ΛTΛ̇Λ′TJ′[k](p)Λ′λ̇

+ 4ΛTΛΛ̇′TJ′[k](p)Λ′λ̇

+ 4ΛTΛΛ′TJ′[k](p)Λ̇′λ̇

+ 4ΛTΛΛ′TJ′[k](p)Λ′λ̈. (B.2)

With the identity Λ̇Λ′T = ΛΛ̇′T the fist two parts of the right hand side of
equation (B.2) can be combined to

4ΛTΛ̇Λ′TJ′[k](p)Λ′λ̇ + 4ΛTΛΛ̇′TJ′[k](p)Λ′λ̇ = 8Λ̇′TJ′[k](p)Λ′λ̇. (B.3)

Since Λ̇′λ̇ = 0, the third part of the right hand side of equation (B.2) is zero.
With the identities ΛTΛ = (I − λλT) and Λ′λ = 0 the fourth part can be
simplified to

4ΛTΛΛ′TJ′[k](p)Λ′λ̈ = 4Λ′TJ′[k](p)Λ′λ̈. (B.4)

Substitution of equations (B.2-B.4) into equation (B.1) gives

4ΛT d
dt

(ΛΛ′TJ′[k](p)Λ′ΛTΛλ̇) = 8Λ̇′TJ′[k](p)Λ′λ̇ + 4Λ′TJ′[k](p)Λ′λ̈. (B.5)
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Appendix C

Specifications Krypton Rodym
6D camera system

The Krypton Rodym 6D system is a camera-based position measurement sys-
tem. Using three linear CCD cameras, the system computes real time the three
dimensional coordinates of individual markers attached to an object to be mea-
sured. The markers are infrared light emitting diodes that are activated in se-
quence to provide real-time marker discrimination. The use of multiple mark-
ers allows calculating the orientation of the object they are attached to.

Figure C.1 shows the measurement system and its working volume. Raw
measurements of a marker position are expressed with respect to the camera’s
coordinate system. This (x, y, z) frame has its origin in the middle of the sen-
sitive surface of the central camera. The z-coordinate of the camera frame rep-
resents the distance between the camera and the marker along the optical axis
of the camera system. The coordinates x and y are situated in a plane, that is
orthogonal to the optical axis. The camera system has a resolution of 0.002 mm.

To increase the absolute accuracy of the camera system, software compen-
sates the raw data with an estimated model that predicts the true measurement
value for each raw measurement value. The camera calibration and its verifi-
cation is done by the manufacturer. The results are presented in the calibration
certificate (Nysen (2001)) and summarised in table C.1. The table shows the
3D measurement errors, measured over a measurement volume of 1 m3. The
measurement error for the z-coordinate is much larger than for the x and y-
direction. Histograms presented in the calibration certificate, visualising the
errors in the x, y and z direction separately, show that the measurement ac-
curacy in the x and y direction is a factor 5 higher than for the z coordinate.
Theredore if measurements are performed in the x-y frame of the camera sys-
tem a higher accuracy can be obtained than presented in table C.1. Table C.2
shows the measurement accuracy for each coordinate separately. The values
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x
y

z

3.6 m

2.
56

m

6.0 m

Figure C.1: Measurement setup Rodym 6D camera system

are estimated from table C.1 assuming the 5 times higher accuracy of the x,y-
coordinate.

Region z-coordinates max. (mm) std. dev. (mm)
I 2-3 m 0.119 0.034
II 3-4 m 0.209 0.052
III 4-5 m 0.283 0.114
IV 5-6 m 0.520 0.167

Table C.1: 3D measurement errors over a measurement volume of 1 m3 of the Krypton
6D measurement system, according to Nysen (2001).

Region x,y-coodinates z-coodinates
max. (mm) std. dev. (mm) max.(mm) std. dev. (mm)

I 0.023 0.007 0.115 0.033
II 0.040 0.010 0.201 0.050
III 0.054 0.022 0.272 0.110
IV 0.100 0.032 0.500 0.161

Table C.2: Estimated measurement errors of a calibrated Krypton 6D measurement
system.

The camera system is equipped with a so-called ’space probe’, which is a
tool consisting of multiple markers and a pointer. The space probe is used to
validate the camera system by measuring calibrated distances between several
points in 3D space, see Bielen (2001). The accuracy of the camera system for
measuring the distance between two points is specified in table C.3

The last camera calibration was done in 2001, see Bielen (2001); Nysen
(2001). During the last few years, various people have validated the accuracy
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of the calibrated system for use in the laboratory, see De Roo (2003); Scheringa
(2006). De Roo (2003) validated the accuracy for small marker displacements,
namely for steps around 0.1 mm, and only a very limited number of points. She
found out that at that moment the camera was within its specification for these
types of measurements. Furthermore, she showed that the system is sensitive
to temperature fluctuations. After switching on the power, it takes around 5
hours before the system is stabilised and during this time the coordinates drift
away 0.3 mm. The camera calibration by the manufacturer is performed for a
stabilised ambient temperature of 20◦. These conditions cannot be met at the
laboratory.

More recently, Scheringa (2006) validated the calibration using measure-
ments from multiple markers. He showed that the camera performs at least 2.5
times worse than is indicated by the specification given in the calibration report
of the manufacturer (Bielen (2001)) that is presented in table C.3. This factor is
a rough estimation because the measurements are not exactly the same. Be-
cause uncalibrated reference lengths are used, this value is a lower bound. The
actual accuracy is could be much worse than this.

distance to 3D measurement
the camera (m) uncertainty (μm)

zone I 1.5-3 90 + 10 · L
zone II 3-5 90 + 25 · L
zone III 5-6 190 + 25 · L

Table C.3: The measurement uncertainty expressed as the maximum measured length
deviation for 95% of the measurements, L = measured length (m), from Bielen (2001).
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Appendix D

Model parameters

Nr Symbol p p(E) p̂(E) Unit |p(E)− p̂(E) |
p(E)

1 m′ [1] 4.32e+001 1.00e-010 0.00e+000 kg 1.000
2 m′ [1]s[1]

x 4.36e-002 2.65e-004 1.25e-004 kg m 0.528
3 m′ [1]s[1]

y 1.68e+000 9.78e-001 9.66e-001 kg m 0.012

4 m′ [1]s[1]
z 4.23e+000 -7.99e-004 -7.97e-004 kg m 0.002

5 J′ [1](p)
xx 8.26e-001 1.98e-001 2.01e-001 kg m2 0.018

6 J′ [1](p)
yy 5.81e-001 2.44e-002 2.13e-002 kg m2 0.127

7 J′ [1](p)
zz 2.45e-001 1.75e-001 1.56e-001 kg m2 0.106

8 J′ [1](p)
xy 5.14e-002 5.17e-002 5.62e-002 kg m2 0.086

9 J′ [1](p)
xz -4.17e-003 -4.96e-005 -3.84e-005 kg m2 0.226

10 J′ [1](p)
yz -1.65e-001 3.29e-002 2.94e-002 kg m2 0.106

Table D.1: Physical parameters p, essential parameters p(E), estimated essential pa-
rameter p̂(E) and relative parameter error |p(E) − p̂(E)|/p(E) of the 4DOF model of
the Stäubli RX90B.
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Nr Symbol p p(E) p̂(E) Unit |p(E)− p̂(E) |
p(E)

11 m′ [2] 1.80e+001 1.99e+001 1.98e+001 kg 0.003
12 m′ [2]s[2]

x 1.80e-004 4.83e-008 4.02e-008 kg m 0.167
13 m′ [2]s[2]

y 1.41e+000 1.41e+000 1.36e+000 kg m 0.031

14 m′ [2]s[2]
z 3.50e+000 1.17e+000 1.23e+000 kg m 0.055

15 J′ [2](p)
xx 1.09e+000 3.04e-002 9.77e-003 kg m2 0.678

16 J′ [2](p)
yy 9.46e-001 -1.13e-001 -1.21e-001 kg m2 0.064

17 J′ [2](p)
zz 1.40e-001 1.39e-001 1.25e-001 kg m2 0.106

18 J′ [2](p)
xy 8.59e-005 -5.59e-008 -5.38e-008 kg m2 0.037

19 J′ [2](p)
xz 6.50e-005 -3.65e-008 -3.16e-008 kg m2 0.134

20 J′ [2](p)
yz -2.40e-001 -2.38e-001 -2.28e-001 kg m2 0.043

21 m′ [3] 1.64e+001 2.24e+001 2.16e+001 kg 0.036
22 m′ [3]s[3]

x 1.64e-004 2.24e-007 7.26e-008 kg m 0.675
23 m′ [3]s[3]

y -1.47e+000 -1.56e+000 -1.46e+000 kg m 0.063

24 m′ [3]s[3]
z -1.14e-001 -5.46e-002 -8.18e-002 kg m 0.499

25 J′ [3](p)
xx 1.83e-001 1.96e-001 1.84e-001 kg m2 0.059

26 J′ [3](p)
yy 4.29e-002 4.71e-002 4.37e-002 kg m2 0.073

27 J′ [3](p)
zz 1.80e-001 1.88e-001 1.93e-001 kg m2 0.029

28 J′ [3](p)
xy 1.15e-004 -3.06e-007 -2.77e-007 kg m2 0.096

29 J′ [3](p)
xz 1.01e-004 -2.92e-007 -3.23e-007 kg m2 0.109

30 J′ [3](p)
yz -6.20e-003 -2.88e-004 6.49e-004 kg m2 3.252

31 m′ [4] 1.14e+001 1.05e+001 1.12e+001 kg 0.063
32 m′ [4]s[4]

x 1.15e-002 1.15e-002 3.43e-003 kg m 0.701
33 m′ [4]s[4]

y 1.14e-004 -2.52e-007 -1.27e-007 kg m 0.496

34 m′ [4]s[4]
z 2.90e+000 2.90e+000 2.88e+000 kg m 0.007

35 J′ [4](p)
xx 9.15e-001 9.15e-001 9.10e-001 kg m2 0.006

36 J′ [4](p)
yy 9.14e-001 9.14e-001 9.05e-001 kg m2 0.009

37 J′ [4](p)
zz 5.61e-002 5.61e-002 4.43e-002 kg m2 0.210

38 J′ [4](p)
xy -9.90e-003 -9.90e-003 -1.01e-002 kg m2 0.025

39 J′ [4](p)
xz -2.83e-003 -2.81e-003 -3.11e-003 kg m2 0.106

40 J′ [4](p)
yz 7.10e-005 -1.53e-007 2.37e-008 kg m2 1.155

41 J[1](a) 1.36e+000 1.36e+000 1.41e+000 kg m2 0.038
42 J[2](a) 1.36e+000 1.36e+000 1.40e+000 kg m2 0.028
43 J[3](a) 6.92e-001 6.92e-001 7.09e-001 kg m2 0.025
44 J[4](a) 3.10e-001 3.10e-001 3.24e-001 kg m2 0.047

Continuation table D.1
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Nr Symbol p p(E) p̂(E) Unit |p(E)− p̂(E) |
p(E)

45 k(c) 2.03e+004 2.03e+004 2.01e+004 N m−1 0.010
46 σ(c,0) 1.66e+003 1.66e+003 1.66e+003 N 0.002
47 τ

(a,0)
1 1.86e+001 5.37e-003 -1.07e-003 N m 1.199

48 c(v)
1 6.63e+001 6.63e+001 6.62e+001 N m (s/rad)(1−δ

(v)
j ) 0.002

49 τ
(a,0)
2 3.26e+001 -3.91e-003 9.24e-003 N m 3.364

50 c(v)
2 6.21e+001 6.21e+001 6.18e+001 N m (s/rad)(1−δ

(v)
j ) 0.005

51 τ
(a,0)
3 8.12e+000 1.48e-004 -9.40e-003 N m 64.384

52 c(v)
3 2.11e+001 2.11e+001 2.10e+001 N m (s/rad)(1−δ

(v)
j ) 0.003

53 τ
(a,0)
4 8.84e+000 -1.31e-001 -1.08e-001 N m 0.178

54 c(v)
4 1.72e+001 1.72e+001 1.71e+001 N m (s/rad)(1−δ

(v)
j ) 0.007

55 k[1]
1 2.80e+005 2.80e+005 2.78e+005 N m rad−1 0.007

56 k[1]
2 4.40e+005 4.40e+005 4.39e+005 N m rad−1 0.002

57 k[1]
3 4.40e+005 4.40e+005 4.39e+005 N m rad−1 0.003

58 k[2]
1 2.70e+005 2.70e+005 2.69e+005 N m rad−1 0.004

59 k[2]
2 2.40e+005 2.40e+005 2.39e+005 N m rad−1 0.005

60 k[2]
3 2.40e+005 2.40e+005 2.39e+005 N m rad−1 0.006

61 k[3]
1 1.00e+005 1.00e+005 9.95e+004 N m rad−1 0.005

62 k[3]
2 2.10e+005 2.10e+005 2.09e+005 N m rad−1 0.006

63 k[3]
3 2.10e+005 2.10e+005 2.07e+005 N m rad−1 0.016

64 k[4]
1 9.00e+004 9.00e+004 7.13e+004 N m rad−1 0.207

65 k[4]
2 1.60e+005 1.60e+005 1.59e+005 N m rad−1 0.005

66 k[4]
3 1.60e+005 1.60e+005 1.59e+005 N m rad−1 0.008

67 d[1]
1 2.80e+002 2.80e+002 2.63e+002 N m s rad−1 0.061

68 d[1]
2 4.40e+002 4.41e+002 4.45e+002 N m s rad−1 0.009

69 d[1]
3 4.40e+002 4.40e+002 4.39e+002 N m s rad−1 0.003

70 d[2]
1 2.70e+002 2.69e+002 2.65e+002 N m s rad−1 0.014

71 d[2]
2 2.40e+002 2.40e+002 2.33e+002 N m s rad−1 0.029

72 d[2]
3 2.40e+002 2.40e+002 2.19e+002 N m s rad−1 0.087

73 d[3]
1 1.00e+002 1.00e+002 9.86e+001 N m s rad−1 0.014

74 d[3]
2 2.10e+002 2.10e+002 2.09e+002 N m s rad−1 0.007

75 d[3]
3 2.10e+002 2.10e+002 1.80e+002 N m s rad−1 0.142

76 d[4]
1 9.00e+001 9.00e+001 7.10e+001 N m s rad−1 0.211

77 d[4]
2 1.60e+002 1.60e+002 1.59e+002 N m s rad−1 0.006

78 d[4]
3 1.60e+002 1.60e+002 1.58e+002 N m s rad−1 0.010

Continuation table D.1
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Appendix E

Noise sensitivity of inverse
eigenvalue algorithm

It is assumed that the resonance frequencies ω[r], the anti-resonance frequen-
cies μ

[r]
j,j and the gain K(H) (see equation (5.40)), including their covariance, are

estimated from experimental data using the techniques described in chapter 6.
Then the drive stiffness k[k+1]

1 of joint j is estimated by substitution of equa-
tion (5.31) into equation (5.53), yielding

k[k+1]
1 ≈ K̃j,j = J[k](a)

N(q)

∑
m=1

∏N(q)−1
r=1 (μ

[r]
j,j

2
− ω[m]2)

∏N(q)

r=1;r 
=m(ω[r]2 − ω[m]2)
ω[m]2. (E.1)

The drive inertia J[k](a) is estimated using equation (5.42), which shows that

J[k](a) =
(

K(H)−1)
j,j

(E.2)

for k = 2j − 1 and j = 1, · · · , N(em).

To estimate the influence of measurement noise on the estimated drive pa-
rameters, equation (E.1) should be differentiated with respect to its parameters
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144 Appendix E. Noise sensitivity of inverse eigenvalue algorithm

ω[r], μ
[r]
j,j and J[k](a). Differentiating equation (E.1) with respect to ω[r] yields

J(1)
j,m = − 2J[k](a)−1 ∑N(q)−1

n=1 ∏N(q)−1
r=1;r 
=n(μ

[r]
j,j

2
− ω[m]2)

∏N(q)

r=1;r 
=m(ω[r]2 − ω[m]2)
ω[m]3

+ 2J[k](a)−1 N(q)

∑
m=1

∏N(q)−1
r=1 (μ

[r]
j,j

2
− ω[m]2)

∏N(q)

r=1;r 
=m(ω[r]2 − ω[m]2)
ω[m]

− 2J[k](a)−1 N(q)

∑
n=1;n 
=m

(
∏N(q)−1

r=1 (μ
[r]
j,j

2
− ω[n]2)(

∏N(q)

r=1;r 
=m(ω[r]2 − ω[n]2)
)2 ω[n]2

×
N(q)

∏
r=1;r 
=m,r 
=n

(ω[r]2 − ω[n]2)ω[m]

)
(E.3)

+ 2J[k](a)−1
(

∏N(q)−1
r=1 (μ

[r]
j,j

2
− ω[m]2)(

∏N(q)

r=1;r 
=m(ω[r]2 − ω[n]2)
)2 ω[m]2

×
N(q)

∑
n=1;p 
=m

N(q)

∏
r=1;r 
=m,r 
=n

(ω[r]2 − ω[m]2)ω[m]

)
.

Differentiating equation (E.1) with respect to μ
[r]
j,j yields

J(2)
j,n = 2J[k](a)

N(q)

∑
m=1

∏N(q)−1
r=1;r 
=n(μ

[r]
j,j

2
− ω[m]2)

∏N(q)

r=1;r 
=m(ω[r]2 − ω[m]2)
ω[m]2μ

[r]
j,j . (E.4)

Differentiation of equation (E.1) with respect to J[k](a) yields

J(3)
j,n =

N(q)

∑
m=1

∏N(q)−1
r=1 (μ

[r]
j,j

2
− ω[m]2)

∏N(q)

r=1;r 
=m(ω[r]2 − ω[m]2)
ω[m]2. (E.5)

Let J be the combined derivative of the drive stiffnesses, defined by

J = [J(1)J(2)J(3)]. (E.6)

The covariance of the drive stiffnesses, denoted by Ĉ(k), is approximated by

Ĉ(k) ≈ Jdiag(Ĉ(w))JT , (E.7)

in which Ĉ(w) is a vector containing the estimated covariances of the resonance
frequencies ω[r], the anti-resonance frequencies μ

[r]
j,j and the drive inertias J[k](a).
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These covariances are closely related to the covariances of the transfer function
parameters Ĉ( p̂), presented in equation (6.46).
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Appendix F

Properties of nonlinear
distortions

The class of nonlinear systems analysed in this appendix is the continuous time
SISO Volterra model, defined by Schetzen (1980) as:

y(t) =
Q

∑
n=1

yn(t) (F.1)

in which

yn(t) =
∞∫

0

· · ·
∞∫

0

gn(τ1, · · · , τn)u(t − τ1) · · · u(t − τn)dτ1 · · · dτn, (F.2)

u(t) is the input, y(t) is the output and the gn(τ1, · · · , τn) are called the Volterra
kernels of the system.

Schoukens et al. (2005) have shown that for this class of systems excited by a
random multi-sine equation (6.12) is an exact representation of the underlying
nonlinear system. With regard to these conditions, the related linear system is
defined by

P(R)(ω f ) = arg
P

min E{|Y[m,o](ω f ) − PU[m,o](ω f )|2},
(F.3)

in which the expected value E{} has to be taken over different realisations of
the multi-sine with equal power spectrum. Furthermore, the nonlinear noise
source has the following properties:

1. Zero mean: E{Y[o](s)(ω f )} = 0.

2. Uncorrelated with the input: E{Y[o](s)(ω f )U[m,o](0)H
(ω f )} = 0.
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148 Appendix F. Properties of nonlinear distortions

3. Y[o](s)(ω f ) is asymptotically independent of U[m,o](0)(ωl), for all f , l.

4. Y[o](s)(ω f ) is asymptotically circular complex normally distributed and
mixing of arbitrary order.

5. The even moments do not disappear:

E{Y[o](s)(ω f )Y[o](s)H
(ω f )} = C(Y(s))(ω f ) = O(N(o)0

).

6. The odd moments converge to zero ( f 
= l):

E{Y[o](s)(ω f )Y[o](s)(ωl)
H} = O(N(o)−1

).
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